SNCR-SCR联合技术锅炉烟气超低排放改造项目技术方案年月中国•西安目录一概述 (1)1工程概况 (1)二脱硫系统改造设计方案 (2)1方案概述 (2)2主要设计原则 (2)3设计规范及技术说明 (2)4脱硫工艺概述 (3)5脱硫系统改造配置清单 (5)三 SNCR-SCR联合脱硝技术 (5)1方案概述 (5)SNCR技术原理 (5)SCR技术原理 (6)SNCR-SCR联合脱硝技术 (7)2工艺流程 (8)工艺描述 (8)SNCR系统组成 (9)SCR脱硝系统组成 (10)3平面布置 (13)4控制系统 (13)5SNCR-SCR联合脱硝物料消耗 (14)6SNCR-SCR联合脱硝配置清单 (14)四电气及控制 (17)1总述 (17)2系统设计要求 (20)3电气设备总的要求 (22)4配电及控制供货清单 (22)五工期计划 (24)一概述1 工程概况1)脱硫:更换除雾器支撑钢结构,更换平板除雾器为定制式屋脊式除雾器,更换循环泵、循环管道及喷淋层,塔体部分修补,大部分重新做防腐。
2)改造锅炉,为SCR脱硝提供反应温度窗口,新建6套SNCR-SCR联合脱硝设备。
3)以上改造完成后,改造完善供配电系统及DCS系统。
二脱硫系统改造设计方案1 方案概述本次超低排放改造,6台58MW锅炉的脱硫系统采用原氧化镁法脱硫工艺。
更换除雾器支撑结构,更换现有平板式除雾器为定制屋脊式高效除雾器,截留出口烟气所携带的雾滴和尘粒,更换循环泵、循环管道及喷淋层,塔体部分修补,大部分重新做防腐。
确保塔出口颗粒物达超低排放标准。
2 主要设计原则1 我方保证提供符合本技术方案和有关现行工业标准的全新的、功能齐全的优质产品及相应服务。
2 我方提供的产品完全符合技术规范的要求。
3 在签订合同之后,到我方开始制造之日的这段时间内,需方有权提出因规范、标准和规程发生变化而产生的一些补充修改要求,我方遵守这个要求,并不产生任何费用变化。
4 本技术方案所使用的标准,如与需方所执行的标准不一致时,按较高标准执行。
5 我方所提供的产品,是技术和工艺成熟先进,并有多台同类产品已投产、经过多年连续运行、经实践检验已证明是成熟可靠的优质产品。
3 设计规范及技术说明1、锅炉技术参数1.1锅炉工作参数额定蒸发量: 80t/h单台烟气量 200000m3/h(按此设计)2、设计依据严格按照所有相关的设计规范与标准,编制本方案。
◆《火电厂大气污染物排放标准》GB13223-2014;◆《火力发电厂设计技术规程》DL5000-2000;◆《吸收塔技术与性能参数手册》;◆厂方提供的技术资料◆国家其它相关标准与规范4 脱硫工艺概述4.1 氧化镁法工艺特点(1)技术成熟氧化镁脱技术是一种成熟度的脱硫工艺,氧化脱硫工艺在世界各地都有非常多的应用业绩。
目前氧化镁法在国内也已经有了很多应用的业绩。
(2)原料来源充足在我国氧化镁的含量十分可观,目前已探明的氧化镁储藏量约为 160 亿吨,占全世界的 80% 左右。
其资源主要健在在辽宁、四川、河北等省,因此氧化镁完全能够作为脱硫剂应用于脱硫系统中去。
(3)脱硫效率高在化学反应活性方面氧化镁要远远大于氧化钙脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小,因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。
(4)投资费用少由于氧化镁作为脱硫本身有其独特的优越性,因此在吸收塔的结构设计、循环浆液量的大小、系统的整体规模、设备的功率都可以相应较小,与钙法脱硫比较,同样的脱硫系统的投资费用可以降低50% 以上。
(5)运行费用低决定脱硫系统运行费用的主要因素是脱硫剂的消耗费用和水电汽的消耗费用。
氧化镁的价格比氧化钙的价格高一些,但是脱除同样的 SO2 氧化镁的用量是碳酸钙的40% ,水电汽等动力消耗方面,液气比是一个十分重要的因素,它直接关系到整个系统的脱硫效率以及系统的运行费用。
对石灰石-石膏系统而言,液气比一般都在 15L/m3以上,而氧化镁在5L/m3以下,这样氧化镁法脱硫工艺就能节省很大一部分运行费用。
(6)运行可靠镁法相对于钙法的最大优势是系统不会发生设备结垢堵塞问题,能保证整个脱硫系统能够安全有效的运行,同时镁法PH值控制在6.5左右,在这种条件下设备腐蚀问题也得到了一定程度的解决。
总的来说,镁法脱硫在实际工程中的安全性能拥有非常有力的保证。
4.2 工艺流程脱硫系统由SO2吸收系统、烟气系统、脱硫剂供给系统、脱硫副产物处理系统、工艺水系统、仪表自控系统和电气控制系统组成。
燃煤锅炉产生的烟气经除尘后,由引风机正压吹入喷淋脱硫塔内,塔体上部设置四层高效雾化喷淋装置,将循环浆液雾化为100~300μm的液滴。
烟气由下而上与喷淋浆液逆流接触,两者充分混合,脱除烟气中的二氧化硫。
喷雾层合理科学地布置,使该雾化区无死角、覆盖率>300%。
脱硫后的液体落入脱硫塔底部浆池,通过鼓入空气将浆液内的亚硫酸镁氧化为硫酸镁。
排出泵将浆液排入沉淀池中进行充分沉淀,沉淀浓缩后的泥浆通过渣浆泵送入脱水间进行脱水,形成含水率较低的固体残渣进行存储利用或抛弃外运;而沉淀池上清液则溢流进入澄清池,通过加入氢氧化镁溶液调节pH 值后再打入脱硫塔内进行循环利用。
经脱硫后的烟气通过塔顶设置的除雾器将烟气中携带的液滴去除,达到同时除尘除雾的效果,除雾器设置冲洗水进行定时冲洗。
洁净烟气最终达标排放。
4.3 工艺原理氧化镁的脱硫机理与氧化钙的脱硫机理相似,都是碱性氧化物与水反应生成氢氧化物,再与二氧化硫溶于水生成的亚硫酸溶液进行酸碱中和反应,氧化镁反应生成的亚硫酸镁和硫酸镁,亚硫酸镁氧化后生成硫酸镁。
脱硫工程中发生的主要化学反应有MgO+H2O=Mg(OH)2Mg(OH)2+SO2 =MgSO3+H2OMgSO3 +1/2O2 =MgSO45 脱硫系统改造配置清单脱硫系统改造供货清单(单台,共6台)三 SNCR-SCR联合脱硝技术1 方案概述SNCR技术原理选择性非催化还原(Selective Non-Catalytic Reduction,以下简称为SNCR)技术是一种成熟的商业性NOx控制处理技术。
SNCR方法主要在850~1050℃下,将含氮的药剂喷入烟气中,将NO还原,生成氮气和水,如下图所示。
NH3/尿素还原反应SNCR反应示意图SNCR在实验室内的试验中可以达到90%以上的NOx脱除率。
应用在大型煤粉锅炉上,短期示范期间能达到75%的脱硝率,长期现场应用一般能达到30%~70%的NOx 脱除率。
SNCR技术的工业应用是在20世纪70年代中期日本的一些燃油、燃气电厂开始的,在欧盟国家从80年代末一些燃煤电厂也开始SNCR技术的工业应用。
美国的SNCR 技术应用是在90年代初开始的,目前世界上燃煤电厂SNCR工艺的总装机容量在2GW 以上。
SNCR技术有如下优点:(1)脱硝效果满足要求:SNCR技术应用在大型煤粉锅炉上,长期现场应用一般能够达到50%以上的NOx脱除率。
(2)还原剂多样易得:SNCR技术中使用的脱除NOx的还原剂一般均为含氮化合物,包括氨、尿素、氰尿酸和各种铵盐(醋酸铵、碳酸氢铵、氯化铵、草酸铵、柠檬酸铵等)。
其中,实际工程应用最广泛,效果最好的是氨和尿素。
(3)无二次污染:SNCR技术是一项清洁的脱硝技术,没有任何固体或液体的污染物或副产物生成。
(4)经济性好:由于SNCR的反应热源由炉内高温提供,不需要昂贵的催化剂系统,因此投资和运行成本较低。
(5)系统简单、施工时间短:SNCR技术最主要的系统就是还原剂的储存系统和喷射系统,主要设备包括储罐、泵、喷枪及其管路、测控设备。
由于设备相对简单,SNCR技术的安装期短,小修停炉期间即可完成炉膛施工。
(6)对锅炉无影响:SNCR技术不需要对锅炉燃烧设备和受热面进行改动,也不需要改变锅炉的常规运行方式,对锅炉的主要运行参数不会有显著影响。
SCR技术原理选择性催化还原(Selective Catalytic Reduction,以下简称为SCR)技术是目前降低NOx排放量最为高效,且是国内外应用最多最成熟的技术,脱硝率可达80%以上。
SCR烟气脱硝系统采用氨气作为还原介质。
SCR DeNOx装置的主要组成部分包括一个装催化剂的反应器,一个氨储罐和一个还原剂注入系统,国外较多使用无水液氨。
其基本原理是把符合要求的氨气喷入到烟道中,与原烟气充分混合后进入反应塔,在催化剂的作用下,并在有氧气的条件下,氨气选择性地与烟气中的NOx (主要是NO 、NO 2)发生化学反应,生成无害的氮气(N 2)和水(H 2O )。
主要反应化学方程式为:4NO + 4NH 3 + O 2 → 4N 2 + 6H 2O 6NO 2 + 8NH 3→ 7N 2 + 12H 2ONO + NO 2 + 2NH 3 → 2N 2 + 3H 2O选择性反应意味着不发生NH 3与SO 2的反应,但在催化剂的作用下,烟气中的少量SO 2 会被氧化成SO 3,其氧化程度通常用SO 2/SO 3转化率表示。
在有水的条件下,SCR 中未反应的的氨与烟气中的SO 3反应生成硫酸氢氨(NH 4HSO 4) 与硫酸氨(NH 4)2SO 4等一些对反应有害的物质。
SCR 技术有如下优点及缺点:(1)脱硝效率高,一般可达80%以上,最大脱硝率可大于90%。
(2)工艺设备紧凑,运行可靠。
(3)还原后的氮气放空,无二次污染。
(4)烟气成分复杂,某些污染物可使催化剂中毒。
(5)烟气中的粉尘微粒可覆盖催化剂的表面,使其活性下降;(6)系统中存在一些未反应的NH 3和烟气中的SO 2作用,生成易腐蚀和堵塞设备的(NH 4)HSO 4或(NH 4)2SO 4。
(7)投资和运行费用较高。
SNCR-SCR 联合脱硝技术SNCR-SCR 联合脱硝技术是SNCR 工艺的还原剂喷入炉膛技术同SCR 工艺利用逸出氨进行催化反应结合起来,从而进一步脱除NOx ,它是把SNCR 工艺的低费用特点同SCR 工艺的高效脱硝率及低的氨逸出率有效结合。
理论上,SNCR 工艺在脱除部分NOx 的同时也为后面的催化法脱除更多的NOx 提供了所需的氨,见图。
SNCR-SCR联合技术示意图SNCR-SCR联合工艺NOx的脱除率是SNCR工艺特性、氨的喷入量及扩散速率、催化剂提供的函数。
要达到75%以上NOx的脱除率和氨的逸出浓度在8ppm以下的要求,采用联合工艺在技术上是可行的。
然而,NOx的脱除率还必须同还原剂的消耗量和所需催化剂体积保持均衡。
在联合工艺的运行中,SNCR系统是在SNCR的温度窗口下喷入还原剂以逸出氨的产生模式运行的,还要求能调节这些逸出氨的量从而满足NOx总脱除率和氨的最低逸出浓度要求。
根据以上所述,联合工艺的特性直接取决于进入催化剂体内的氨与NOx 分布情况,偏差较大的分布可能影响催化剂对整个运行的适应能力。