当前位置:文档之家› 摩擦焊连接方法与基本原理

摩擦焊连接方法与基本原理


形成粗大、不对称封闭圆滑
的飞边,如图9-5(a)所 示。
图9一5主轴转速高时产生的不良影响 (a)n = 1000 r/min ; (b) n= 2000r/min (c)n = 4000r/min
对于同一个焊件短,只需几秒钟;而当n、p、t 的参数
条件不是惟一的。当n 较低、p较大,t可以较短,只需几
摩擦焊热源的功率和温度不仅取决于焊接工艺规范
参数,还受到焊接工件材料、形状、尺寸和焊接表面准备 情况的影响。摩擦焊热源的最高温度接近或等于焊接金属
的熔点。
异种金属摩擦焊时,热源温度不超过低熔点金属的熔 点,这对保证焊接质量和提高焊接过程的稳定性起了很大 作用。不同材料和直径的工件,在不同转速和摩擦压力下 焊接时,摩擦焊接表面的稳定温度列于表9.1。
9.2.1 搅拌摩擦焊(Friction Stir Welding) 搅拌摩擦焊是英国焊接研究所推出的一项专利
技术,其原理见图9一2。
搅拌摩擦焊目前不仅限
于对各类铝合金的焊接,也
开发应用于钢和钛合金,单 面可焊厚度从2mm到25mm ,
Hale Waihona Puke 双面焊的厚度可达50mm用常
规熔焊方法不能焊接的2xxx 系列铝合金,采用搅拌摩擦
在能够向前移动加压的夹头上。焊接开始时,工件1首先以
高速旋转,然后工件2向工件1方向移动、接触,并施加足
够大的摩探压力,这时开始了摩擦加热过程,摩擦表面消耗 的机械能直接转换成热能。
摩擦一段时间后,接头金属的摩擦加热温度达到焊接
温度,立即停止工件1的转动,同时工件2向前快速移动, 对接头施加较大的顶锻压力,使其产生一定的顶锻变形量。 压力保持一段时间后,松开两个夹头,取出焊件,全部焊接 过程结束,通常全部焊接过程只要2~3 S的时间。 在整个焊接过程中,摩擦界面温度一般不会超过材料熔 点,所以摩擦焊属于固相焊接。
焊可以使其焊接性能大为改
善。与氢弧焊接头相比,同
图9.2搅拌摩擦焊原理
一种铝合金搅拌摩擦焊头的强度高15%~20%,伸长 率高1倍,断裂韧度高30%,接头区为细晶组织,焊缝
中无气孔、裂纹等缺陷;此外,焊件焊后残余变形很小,
焊缝中的残余应力很低。 这种方法的缺点是,为了避免搅拌引起的振动力使焊
件偏离正确的装配方位,在施焊时必须把焊件刚性固定,
(2)摩擦压力增大,摩擦破坏了焊接金属表面,使纯
净的金属接触,接触面积也增大,而焊接表面温度的升高, 使金属的强度有所下降,塑性和韧性却有很大提高,这些
因素都使摩擦系数增大,摩擦加热功率迅速提高,扭矩也
出现一个峰值。 焊接表面温度继续升高时,金属的塑性增高,但强 度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值。 这一过程中,摩擦表面的机械挖掘现象减少,振动降低, 表面逐渐平整,开始产生金属的粘结现象。高温塑性状态 的金属颗粒互相焊合后,又被工件旋转的扭力矩剪断,并 彼此过渡。
秒钟时间;当n 较高、p较小,t 将较长,例如可达40s显 然对于小焊件宜尽可能采用短时间参数,大端面焊件则只
可用弱参数。此外,不同材质的焊件,t的匹配条件也不一
样,例如高合金钢摩擦焊,摩擦压力和时间都应增加。 3. 停车时间及顶断延时 一般应在制动停车0.1~1s后进行顶锻,其间转速降 低,摩擦阻力和摩擦扭矩增大,轴向缩短速度也增大。调
(3)摩擦功率或扭矩稳定后,摩擦表面的温度继续升高, 这时金属的粘结现象减少,分子作用现象增强。此时金属强度
极低,塑性很大,摩擦表面似乎被一层液体金属所润滑,摩擦
系数很小,各工艺参数的变化也趋于稳定,只有摩擦变形量不 断增大,飞边增大,接头的热影响区增宽。 (4)主轴和工件开始停车减速后,随着轴向压力增大,转 速降低,摩擦扭矩增大,再次出现峰值,称为后峰值扭矩。同 时接头中的高温金属被大量挤出,变形量也增大。制动阶段是
节顶锻延时则可以调整后峰值扭矩及变形层厚度。
4. 顶锻压力及顶锻变形量
顶锻是为了挤碎和挤出变形层中氧化了的金属和其它
有害杂质,并使接头区金属得到锻压、结合紧密、晶粒细 化、性能提高。顶锻变形量是锻压程度的主要标志。
顶锻力大小取决于焊件材质、温度及变形层厚度,也
跟摩擦压力有关。材质高温强度高、接头区温度低或变形 层较薄时,顶锻压力应取大一些,其范围为100~ 200MPa。一般顶锻压力宜为摩擦压力的2~3倍,顶锻 量为1~6mm,顶锻速度宜为10~40(mm/h) 。
金属焊接表面的摩擦不仅产生热量,面且还能破坏
和清除表面的氧化膜。变形层金属的封闭、挤出和不断被
高温区金属更新,可以防止焊口金属的继续氧化。顶锻焊 接后,部分变形层金属像填料一样留在接头中会影响焊接 质量。
Contents
§ 9.4 摩擦焊规范参数
9.4.1连续驱动摩擦焊工艺参数
连续驱动摩擦焊主要工艺参数有转速、摩擦压力、 摩擦时间、停车时间和顶锻时间以及顶锻压力和顶锻
变形量等。这些参数取决于工件的横截面积、金属的
熔点和导热系数、热循环过程中冶金性能的变化(特 别是在异种金属焊接时)等因素。一下对各种工艺参
数进行详细说明。
1. 转速和摩擦压力
摩擦焊接过程的加热来源于摩擦能,其加热功率为
式中 , R — 焊件的工作半径(mm); n — 主轴转速(r/min); P—摩擦压力(MPa); μ—摩擦系数,其值在摩擦过程中是变化的,数值在0.2~2 之间; Kf,—常数。
度也不断缩短。
异种金属的结合机理比较复杂,除了犁削一粘合一剪 切撕裂物理现象外,金属的物理与力学性能、相互间固溶
度及金属间化合物等,在结合机理中都会起作用。
焊接时由于机械混合和扩散作用,在结合面附近很窄 的区域内有可能发生一定程度的合金化。这一薄层的性能
对整个接头的性能会有重要影响。机械混合和相互镶嵌对
擦加热过程和顶锻焊接过程两部分。
(1)摩擦开始时,由于工件摩擦焊接表面不平,以及存在
氧化膜、油锈、灰尘和吸附气体使得摩擦系数很大,随着
摩擦压力逐渐增大,摩擦加热功率慢慢增加,使凹凸不平的 表迅速产生塑性变形和机械挖掘现象。塑性变形破坏了摩
擦表面金属晶粒,成为一个晶细小的变形层。沿变形层附
近的母材也顺摩擦方向产生塑性变形。金属相互压人部分 挖掘,使摩擦表面出现同心圆痕迹,这样又增大了塑性变形。
结合也会有一定作用。这种复杂性使得异种金属的摩擦焊 接很难预料。
Contents
§ 9.2
摩擦焊分类
摩擦焊工艺方法目前已由传统的几种形式发展
到20多种,极大地扩展了摩擦焊的应用领域。常用 的摩擦焊工艺有连续驱动摩擦焊、惯性摩擦焊、线性 摩擦焊、搅拌摩擦焊等。焊件的形状由典型的圆截面 扩展到非圆截面(线性摩擦焊)和板材(搅拌摩擦焊), 所焊材料由传统的金属材料拓宽到粉末合金和异种材 料领域。
LOGO
焊接成型原理
长春工业大学材料科学与工程学院 课件制作:徐世伟 指导教师:刘耀东
第九章 摩擦焊连接方法与基本原理
摩擦焊(Friction Welding)是一种压焊方法
,它是在外力作用下,利用焊件接触面之间的相对 摩擦运动和塑性流动所产生的热量,使接触面及其 临近区金属达到粘塑性状态并产生适当的宏观塑性 变形,通过两侧材料间的相互扩散和动态再结晶而
9.2.3 惯性摩擦焊 惯性摩擦焊是在焊接过程开始前输人焊接所需的全 部机械能。一工件固定不转动,转动的工件装在带有可更
换的飞轮组的转动夹具上,整个转动部分被驱动到转速
n0后脱开驱动。使两工件接触并施加轴向压力P,焊接过 程开始。飞轮的能量通过工件结合面上的摩擦迅速消耗,
转速减至零,焊接结束。在转动停止前摩擦扭矩有一个急
完成焊接的。
Contents
9.1
摩擦焊基本原理 摩擦焊分类 摩擦焊接过程分析 摩擦焊规范参数
9.2
9.3
9.4
9.5
摩擦焊接头的缺陷及检测
§ 9 .1 摩擦焊基本原理
图9一1是摩擦焊的基本形式,两个圆断面的金属 工件摩擦焊前,工件1夹持在可以旋转的夹头上, 工件2夹持
图9,1摩擦焊原理示意图 1一工件;2一工件;3一旋转夹头;4一移动夹头 (a)形成相对转动〔b) 施加压力两界面接触(C)进行焊接(d)焊接结束
都集中在变形层中,稳定摩擦时变形层金属在摩擦扭矩和
轴向压力的作用下,从摩擦表面挤出形成飞边,同时又被 附近高温区的金属所补充,始终处于动平衡状态。
在制动和顶锻焊接过程中,摩擦表面的变形层和高温
区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量 良好的焊接接头。
9.3.2 摩擦焊热源的特点
摩擦焊的热源就是金属摩擦焊接表面上的高速摩擦
图9一3连续驱动摩擦 焊典型特性曲线
图9一4惯性摩擦焊 典型特征曲线
Contents
§ 9.3 摩擦焊接过程分析
这里我们主要讨论应用最广泛的结构钢 连续驱动摩擦焊的焊接过程及其热源特点。
9.3.1 焊接过程
摩擦焊接过程,是焊接表面金属在一定的空间和时间
内,金属状态和性能发生变化的过程。连续驱动摩擦焊特 性曲线如图9一3,摩擦焊接过程的一个周期,可分成摩
摩擦加热过程和顶锻焊接过程的过渡阶段,具有双重特点。
主轴停止旋转后,顶锻力仍要维持一段时间,直至接头温 度冷却到规定值为止。
总之,在摩擦焊接过程中,金属摩擦表面从低温到高 温变化,而表面的塑性变形、机械挖掘、粘结和分子作用 四种摩擦现象连续发生。 在整个摩擦加热过程中,摩擦表面上都存在着一个高 速摩擦塑性变形层。摩擦焊的发热、变形和扩散现象主要
同种材质摩擦焊时,最初界面接触点上产生犁削一粘 合现象。由于单位压力很大,粘合区增多,继续摩擦使这 些粘合点产生剪切撕裂,金属从一个表面迁移到另一个表 面。 界面上的犁削一粘合一剪切撕裂过程进行时,摩擦力
矩增加使界面温度升高。当整个界面上形成一个连续塑性
相关主题