题目锅炉课程设计
学生姓名
学号
院 ( 系 )
专业
指导教师
报告日期2016年12月28日
目录
前言
第一章锅炉课程设计任务书 (3)
第二章煤的元素分析数据校核和煤种判别 (5)
第三章燃料燃烧计算 (7)
第四章锅炉热平衡计算 (9)
第五章炉膛设计和热力计算 (10)
第六章前屏过热器设计和热力计算 (15)
第七章后屏过热器设计和热力计算 (20)
第八章温再热器设计和高热力计算 (24)
第九章第一悬吊管热力计算 (28)
第十章高温对流过热器设计和热力计算 (30)
第十一章第二悬吊管热力计算 (33)
第十二章低温再热器垂直段设计和热力计算 (35)
第十三章转向室热力计算 (39)
第十四章低温再热器水平段设计和热力计算 (41)
第十五章省煤器设计及热力计算 (45)
第十六章分离器气温和前屏进口气温的校核 (48)
第十七章空气预热器设计和热力计算 (49)
第十八章锅炉整体热平衡校核 (56)
第十九章热力计算结果的汇总 (57)
前言
《锅炉原理》是一门涉及基础理论面较广,而专业实践性较强的课程。
该课程的教学必须有相应的实践教学环节相配合,而课程设计就是让学生全面运用所学的锅炉原理知识设计一台锅炉,因此,它是《锅炉原理》课程理论联系实际的重要教学环节。
它对加强学生的能力培养起着重要的作用。
本设计说明书详细的记录了锅炉本体各受热面的结构特征和工作过程,内容包括锅炉受热面,锅炉炉膛的辐射传热及计算。
对流受热面的传热及计算,锅炉受热面的布置原理和热力计算,受热面外部工作过程,锅炉蒸汽参数的变化特性与调节空气动力计算等。
由于知识掌握程度有限以及三周的设计时间对于我们难免有些仓促,此次设计一定存在一些错误和遗漏。
第一章锅炉课程设计任务书
引言
锅炉课程设计是巩固我们理论知识和提高实践能力的重要环节。
它不仅使我们对锅炉原理课程的知识得以巩固、充实和提高掌握了锅炉机组的热力计算方法,学会使用锅炉机组热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力而且培养了我们查阅资料,合理选择和分析数据的能力,培养了我们严肃认真和负责的态度。
我国的锅炉目前以煤为主要燃料。
锅炉的结构设计和参数的设计与选择以及煤种的选择与应用等都将会对燃料效率、锅炉安全经济运行水平以及环境污染等问题有影响。
因为在锅炉设计中对锅炉的性能、
结构、经济性和可靠性等方面进行各种计算,尤其是热力计算作为主
要和基础的计算,为锅炉的其他计算,如水和空气动力计算、烟气阻
力计算、强度计算等提供相关的重要的基础数据。
锅炉设计参数
(1)锅炉额定蒸发量:D〃sh=1913t/h
(2)过热蒸汽压力:P〃sh= MPa(表压)
(3)过热蒸汽温度: t〃sh=571 ℃
(4)再热蒸汽流量:Drh=1586t/h
(5)再热蒸汽入口压力:p'rh=(表压)
(6)再热蒸汽入口温度:t'rh=310℃
(8)再热蒸汽出口压力:p"rh=(表压)
(9)再热蒸汽入口温度:t"rh=569℃
(10)给水温度 :t〃fw=282℃
(11)给水压力:p〃fw=
(12)周围环境温度:t ca=20℃
(13)排烟温度假定值:exg=126℃
燃料特性;
(1)燃料名称:丰广褐煤
(2)煤的收到基成分:(%):C ar= H ar= O ar= N ar= S ar= A ar= M ar=
(3)煤的干燥无灰基挥发分:V daf=%
(4)煤的低位发热值:Q net,ar=13410kJ/kg
(5)灰熔点:DT、ST、FT>1500℃
第二章煤的元素分析数据校核和煤种判别
炉整体的外型——选Π型布置
选择Π形布置的理由如下:
(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,
锅炉结构和厂房较低,烟囱也建在地面上;
(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;
(3)各受热面易于布置成逆流的方式,以加强对流换热;
(4)机炉之间的连接管道不长。
受热面的布置
在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
本锅炉为中压参数,汽化吸热较少,加热吸热和过热吸热较多。
为使炉膛出口烟温降到要求的值,保护水平烟道的对流受热面,在水平烟道内布置高、低温对流过热器。
前后隔墙省煤器采用膜式水冷壁结构。
设置省煤器时,根据锅炉的参数,省煤器出口工质状态选用非沸腾式的。
t=350C ,理应采用二级布置空气预热器。
在省煤器热风温度
rk
的烟道转弯处,设置落灰斗,由于转弯处离心力的作用,颗粒较大的灰粒顺落灰斗下降,有利于防止回转式空气预热器的堵灰,减轻除尘设备的负担。
汽水系统
按锅炉热力系统的设计要求,该锅炉的汽水系统的流程设计如下:
(1)过热蒸汽系统的流程
汽包——顶棚式过热器——低温对流过热器——一级喷水减温——高温对流过热器——汽轮机
(2)水系统的流程
给水泵——低温级省煤器——高温级省煤器——汽包——下降管——下联箱——水冷壁——上联箱——汽包。
第三章燃料燃烧计算
燃烧产物计算
(1)理论烟气量及理论烟气容积
(2)空气平衡表及烟气特性表
根据该锅炉的燃料属优质燃料,可选取炉膛出口过量空气系数α’’1=,选取各受热面烟道的漏风系数,然后列出空气平衡表,如表41。
根据上述计算出的数据,又选取炉渣份额后计算得飞灰份额αfh=,计算表42列出各项,此表为烟气特性表。
表42 空气平衡表
(4)烟气特性表
第四章锅炉热平衡计算热平衡及燃料消耗量计算
锅炉热平衡及燃料消耗量计算,如表
第五章炉膛设计和热力计算
炉膛尺寸的确定是借助于恰当选取一组炉膛热力参数(如炉膛的容积热负荷q v、截面热负荷q a等)来完成的。
当选取了较大的q v时,炉膛容积就要小一些;当选取了较小的q a时,炉膛截面就大一些,炉膛变得较为矮胖。
在选取炉膛容积热负荷q v时,要综合考虑煤粉在炉内的停留时间、燃尽的条件、水冷壁受热面是否布置得开、炉膛出口烟温、炉膛温度和结焦倾向、整个炉膛的造价等。
在一般情况下,按燃尽条件确定的炉膛容积V L,都不足以使烟气在炉内得到足够的冷却,因此,按冷却条件确定的q v值都要小于按燃尽条件确定的q v值。
我国各大锅炉制造厂在炉膛设计中,多从燃烧安全、传热充分出发,按照冷却条件来确定q v,因此q v值都选得小些,从煤种的通用性来说采用较低的q v值较合适,缺点是锅炉尺寸较大,消耗钢材量较多。
“标准”中表ⅩⅧ所规定的是按燃尽条件允许的q v值范围,其确定的炉膛容积都较小些。
按照冷却条件确定q v值一般在80~120 kW/m3之间选取;按燃尽条件确定q v值一般在110~170 kW/m3之间选取。
表1 列出了我国大容量锅炉炉膛热力参数的推荐范围:
表1 我国300MW、600MW电站锅炉热力参数的推荐值
表2 列出了炉膛热力参数选取的某些影响因素。
表2 对炉膛热力参数选取的一些影响因素
选定了炉膛容积热负荷q v 之后,即可求炉膛容积V L :
v
p
,net .ar V q Q B L
m 3 (1)
式中 B —实际燃料消耗量,kg/s ; ,p —燃料低位发热量,kJ/kg 。
确定了炉膛容积以后,即可根据所选取的另外一个炉膛热力参数q a ,按下式确定炉膛的截面面积A L (通常指燃烧器标高处的炉膛截面积):
a
L q Q B A p
,net .ar
m 2 (2)
式中符号意义同前。
在选取q a 时,主要考虑燃料的着火、燃尽性能、炉膛和燃烧器的结焦、水冷壁高温腐蚀等要求,例如当煤的挥发分低、灰分高时,应重点考虑煤的着火问题,q a 不宜选取太低,以便提高燃烧器区域的炉温,促进煤的着火和燃尽;当燃用灰熔点偏低、易结焦的煤时,应注
意考虑炉膛和燃烧器可能产生结焦问题,q a不宜选取太高,以便降低燃烧器区域的炉温,防止炉膛结焦。
电站锅炉q a值的范围大致在~MW/m2之间。
选取合宜的炉膛宽深比c,可以确定炉膛的截面形状,从而在炉膛截面积A L已定的条件下,计算出炉膛截面的宽度和深度。
对于采用四角布置直流燃烧器的锅炉,一般希望炉膛的宽深比不大于,以保证良好的炉内空气动力工况。
在确定炉膛宽度时还要兼顾尾部烟道的尺寸,能很好布置尾部受热面。
以上只是大略地决定炉膛的宽度和深度,然后再根据水冷壁的具体结构加以修正。
炉膛结构设计
炉膛热力计算
第六章前屏过热器设计和热力计算。