当前位置:文档之家› 金属注射成形介绍

金属注射成形介绍

金属注射成形介绍金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制品,但塑料制品强度不高,为了改善其性能,可以在塑料中添加金属或陶瓷粉末以得到强度较高、耐磨性好的制品。

近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。

这种新的粉末冶金成形方法称为金属注射成形。

金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。

1.MIM粉末及制粉技术MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等,表1中列出了最适合于MIM用的原料粉末的性质。

由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。

1.1羰基法MIM最早使用的粉末是羰基法生产的,美国GAF化学公司采用较粗的海绵铁粉作原料,制粒后在350度氢气中退火活化,然后置于反应器中,铁粒暴露在循环的CO中,气体压力为6OPMa,温度160度,铁与CO发生反应,得到气态的Fe(CO)5,并加以冷凝收集,接下来,使Fe(CO)5蒸发通过一个垂直的反应塔,反应塔加热到300度,在催化剂NH3作用下,Fe(CO)5在塔顶部分解为Fe和CO气体,将沉积的铁粉聚集体球磨,得到符合要求的成品铁粉,粉中一般含0.8%C,0.7%N和0.3%O(质量分数)。

羰基法是一种较为成熟的制备MIM用粉末的方法,所制得的粉末呈秋形,粒度小,但是羰基法只能生产有限的几种粉末(如铁粉、镍粉),不易生产包含2种以上元素的合金粉,而且羰基法生产过程毒性大,在MIM生产过程中还存在碳含量控制的问题。

1.2超高压水雾化法日本的PAMCO,Kawasaki Steel,Kawasaki Steel几家公司发展了一种超高压水雾化,该法能够较为经济地大量生产MIM用金属和合金粉末。

其中以PAMCO公司产量最大,工艺也最有代表性。

该公司年产MIM用粉末300t采用150MPa高压水雾化,其主要产品为各种不锈钢粉和低合金钢粉,PAMCO从20世纪80年代中期开始商业生产MIM粉,针对水雾化粉摇实密度低,导致注射成形时填充密度低而需要较多的粘结剂的缺点,在增加粉末的球化率,提高其摇实密度方面作了许多改进,改进后的PAMCO新型MIM粉的摇实密度比常规MIM水雾化粉的摇实密度提高了10%,采用具有较高摇实密度的粉末,PAMCO已经成功地将所需粘结剂减少了20%左右。

1.3采用改进型喷嘴的高压气体雾化法气体雾化法生产的粉末摇实密度高,流动性好,所需添加剂量少,且用惰性气体,所得粉末的残留气体含量比水雾化粉至少低一个数量级,但是一般气体雾化粉颗粒较粗,约为40-50um,能适应MIM要求的细粉量很少,英国Osprey公司和PSI公司为此对喷嘴进行改进,采用高压气体雾化,使得适合MIM用的细粉产出率大大提高。

Osprey公司用高压氩气和氮气(压力为5PMa)生产的不锈钢粉末中有75%的粉末粒度小于20um,大大高于常规气雾化法的20%,其平均粒度为14um,该公司还用该法生产了高速钢粉、工具钢粉以及磁性合金粉等。

据Osprey公司称,这种高压气雾化MIM粉价格主要取决于生产规模大小,在大规模生产的情况下,该法生产的粉末价格甚至可以与高压水雾化法抗衡。

1.4微雾化法美国Micro Materials Technology和GTE Products公司报道了他们采用微雾化法制备MIM用细粉的情况。

据称,该法是一种有效制备小于20um粉末的生产方法,其原理是基于金属液滴撞击不浸润的基片而发生破碎。

原料为普通雾化法生产的较粗粉末(50-150um),利用等离子喷枪熔化原料粉末并加速熔融金属液滴,被加速的金属液滴撞击不浸润的旋转基盘而产生破碎,破碎的细小液滴球化,并迅速冷却成细小粉末。

微雾化法是一种将较粗粉末有效地处理成细粉的新工艺,有以下优点:无容器熔化而大大减少了粉末污染;由于高的等离子气体的温度,没有熔点限制,可以方便地制造各种难熔金属和合金粉末;不需要常规的庞大的炉子装置,节约能源。

另外,美国Ultra Fine Powder Technology公司开发了一种Tandem雾化装置,它的基本原理是在雾化之前,将一定压力的气体注入金属熔体中,这样,雾化后每一金属液滴内都包含有气体。

在冷却过程中,液滴内部气体压力增大,金属液滴产生破碎而得到超细球形粉末。

1.5Nanoval层流雾化法德国Nanoval公司开发出了一种独特的气雾化技术,基本思路是应用自稳定的、严格成层状的气流,使熔化的金属平行流动。

熔化了的金属从拉瓦尔喷嘴的入口到最窄处被气体压缩而迅速加速(从几m/s到音速),气体为获得稳定而呈层状流动。

在最窄处以下,气体被快速压缩,加速至超音速,在气液流界面由于剪切应力,金属熔体丝以更高的速度变形,最终不稳定而破裂成许多更细的丝,最终凝结成细小粉末。

该技术可直接生产许多适合于MIM的贵金属粉、特殊牌号的不锈钢和高速钢粉、铜基合金和超合金粉等,该公司产品粉末粒度约为10um,其中20um粒度以下的粉末约占90%。

2粘结剂粘结剂是MIM技术的核心,在MIM中粘结剂具有增强流动性以适合注射成菜和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。

粘结剂一般是由低分子组元与高分子组元加上一些必要的添加剂构成。

低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。

二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。

通常采用的粘结剂主要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。

2.1热塑性体系石蜡基粘结剂是最早使用,而且至今仍有竞争力的粘结剂休系,特别是壁厚小于3mm的零件,主要由石蜡与聚烯烃组成。

如HDPE,LDPE,PP,PS,EVA,PEEA,POM/PE等。

石蜡中PW,PEW无极性,而CW,BW有弱极性,相互配合可改善粘结剂与粉末的粘合程度。

石蜡高温粘度低,与塑料相容性好,粉末装载量高,但石蜡体系冷却时收缩大,内应力大,脱脂慢。

油基粘结剂主要利用油在室温下为液态或半固态,与石蜡基粘结剂相比,改善了内诮力,另外采用溶剂脱脂速度快。

加然German认为若采用溶剂脱脂,应采用氢化植物油或椰子油,然而许多文献报道可用其它多种油,如日本用花生油、Sasamw油与PE,PP配成粘结剂,美国用Hunt Weseen油与PE构成粘结束剂,石脑油可与PMMA配合。

使用油基粘结剂的难点在于增加油含量的同时要保持生坯强度,防止两相分离的产生,以及快速溶剂脱脂时解决溶胀和应力开裂的问题。

AMAX Injection Molding公司的专利技术对这些问题解决得较好。

一般来说,热塑性聚合物基粘结剂由于使用较多聚合物,成形坯强度高,但较多的聚合物会导致脱脂慢、装载量低。

这一类体系也有报道,如67%PP、22%微晶蜡、1%SA,以及72%PS,15%PP,10%PE,3%SA。

最成功地应用于大规模工业生产的是20世纪90年代德国BASF公司开发的粘结剂。

他们采用独特的方法解决了这类体系的不足,该粘结剂90%以上为改性聚醛树脂加上少量添加剂以利于高温保形和降低粘度,不仅粉末装载量高,而且喂料粘度与石蜡基在同一数量级,可适合很广泛的粉末种类。

公司已制成Fe,Fe/Ni,100Cr6,Fe/Co,WC/Co,Cu合金,YBa2Cu3O7等多种喂料出售。

2.2凝胶体系1978年美国的R.D.Rivers发明了凝胶体系,由甲基纤维素、少量水、甘油和硼酸组成。

甲基纤维素与水在受热时形成凝胶以提高生坯强度,特点是使用有机物少,脱脂快。

不足之处是生坏强度低,脱模困难,不能连续生产,类似的体系还有琼脂与水。

1994年法国Impac 和Metals Process System公司宣称开发了Quickset无粘结剂工艺,只需传统MIM粘结剂含量的5%,实际上也是用极少量的有机物加液体载体以形成特殊的结构来获得生坯强度。

据称该粘结剂体系已可用来生产厚至20mm,重达800g的零件。

目前日本PAMCO公司正和MPS公司联合研究,进一步开发这一技术。

2.3热固性体系Brasel通过对多种热固性树脂的选择,确定了呋喃族树脂可用于MIM,Petzoldt应用端羰基的聚酰胺树脂,以多字能团环氧树脂为硬化交联剂,在150-250℃时发生交朕,交朕温度高于注射和混炼温度。

热固性粘结剂有些缺陷是难以解决的,如脱脂时不产生小分子,有残留,废次品不能重复使用等,因此限制了它在实际工业中的应用。

2.4水溶性体系水溶性粘结剂是20世纪90年代开发出的一类很有前途的体系,是从“固态聚合物溶液”(SPS)体系中发展起来的,用水溶性聚乙二醇(PEG)作主要成分,加部分PMMA或苯氧树脂作粘结剂,在脱氧蒸馏水中浸泡脱脂,但这种体系存在混合时间长、脱脂慢、溶胀等缺陷。

后来Amwar作了改进,采用悬浮聚合得到的超高分子量的PMMA(分子量-106),配合以特定的混合方式,解决了变形问题,使水脱脂温度可以从室温升至60-80℃,脱脂时间从16h降至3h,而且制备出了较高尺寸精度的产品。

Hens等另辟蹊径,用PEG与可交联的聚合物PVB于脱脂前或部分脱脂后用紫外光固化,也控制了脱脂变形。

Bialo发展了另一类水溶性体系,以聚氧化乙烯(PEO)为水溶性部分,成形坏只需在水中浸泡60-70min就可脱除PEO。

水溶性体系由于采用水脱脂,价格便宜,无毒,有利于环保,然而粘结剂存在吸水问题,混合较难,产品尺寸精度还不高。

所以,虽然该体系已问世五年,但到目前为止,仍处于实验室阶段,但该体系无疑极具潜力,是发展方向。

此外还有些新型粘结剂体系,工艺上各有特点。

如美国专利提出的聚酰胺基粘结剂;日本专利报道的丙烯酸系粘结剂,特点是易除去,无副县长产物;含烷基的硅酸盐无机物粘结剂,其注射压力小于有机物粘结剂体系。

此外还有自行合成的非晶态聚合物粘结剂,特点是可用混合溶剂解等。

相关主题