纳米复合材料文专业:电气工程与自动化班级:13级2班姓名:许超学号:1316301193纳米材料综述:纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。
它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。
前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。
1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
Gleiter 在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。
1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。
从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。
在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。
一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。
纳米复合材料综述:纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。
纳米复合材料优点纳米复合材料是指分散相尺度至少有一维小于100nm的复合材料,由于纳米分散相大的比表面和强的界面作用,纳米复合材料表现出不同于一般宏观复合材料的综合性能。
纳米颗粒由于其尺寸小,比表面积非常大而表现出与常规微米级材料截然不同的性质。
在与聚合物复合时,纳米颗粒的表面效应,小尺寸效应,量子效应以及协同效应,将使复合材料的综合性能有极大的提高。
这种复合材料既有高分子材料本身的优点,又兼备了纳米粒子的特异属性,因而使其具有众多的功能特性,在力学,催化,功能材料(光,电,磁,敏感)等领域内得到应用。
例如,插层法制得的聚丙烯/蒙脱土等纳米复合材料,在力学性能上具有了高强度,高模量,韧性和高热变形温度等优点。
阻隔性能在尼龙6和还氧树脂中纳米分散少量层状蒙脱土,并暴露在氧等离子体中,可形成均匀钝态和自恢复无机表面。
这是由于纳米复合物中表面高分子的氧化使层状硅酸盐的含量相对增多,从而形成一层无机表面层。
此无机区域是湍层的,层状硅酸盐之间的平均距离为1nm~4nm。
这类陶瓷硅酸盐提供了一种纳米复合物的涂层,可以阻止氧气离子的渗入,从而提高了高分子材料在氧环境中的生存寿命。
生物功能 RichardM等用四步软印法在高分子正-烷基硫醇表面上获得表面图形凹槽,并成功用于培养细菌细胞。
这种位于表面的功能单元属一种三维细菌栏,体积可小至12立方微米。
获得的细菌栏是憎水的,甲基封端的正烷基硫醇为底部,可提高细菌的粘附,而栏壁则由聚丙烯/聚己二醇层状纳米复合物构成,可以降低粘附。
细菌可在此种表面图形凹槽内成活,大槽可以养18±5个细菌,小槽可养2±1个。
电学磁学性能[7] B.Scrosati等人通过将纳米尺寸的陶土粉末分散到聚乙二醇-锂盐中获得一种新型的含锂聚电解质。
此复合物在30℃~80℃范围内有很好的机械稳定性能和高的离子导电性,所以此纳米复合聚电解质在可充锂电池的应用上有很好的前景。
G.Hadziioannou等研究了高分子含量与壳形貌对电导性能的影响。
他们用导电的聚吡咯涂覆到不导电的胶乳表面,可以获得很低的渝渗域值。
发现聚吡咯的含量小于2%时,聚吡咯壳表面是平滑的,且导电性随聚吡咯的浓度的增加而提高,渝渗域值为0.25%,表明此时聚吡咯壳的厚度为0.6nm。
在聚吡咯的含量大于2%时,吡咯壳呈现出不同的表面形貌,甚至会形成独立的聚吡咯粒子,而且此时的导电性与聚吡咯的含量无关。
光学与光电导性能[4] ParasN.Prasad等人报导了聚N-乙烯基咔唑(PVK)与表面钝态的CdS形成的杂化复合物具有光电导性质。
其中PVK作为电荷转移高分子基质,表面钝态的CdS用作电荷产生的光敏剂。
JeffreyG实验发现,此纳米复合物的光电导性质好于聚N-乙烯基咔唑(PVK)与C60所形成的复合物。
R.Premachandran等在反胶束的微结构环境中用酶催化反应合成了含硫羟基的聚苯酚,在反胶束的水相中合成了CdS半导体纳米晶体,通过硫羟基将聚苯酚与CdS半导体纳米晶体连接形成纳米复合物,此纳米复合物在溶液中很稳定,固态时呈微球形状,并且具有量子点粒子的发光性质。
控制共聚单体量,改变Zn/Cd比率可以得到不同含量的ZnS或ZnxCd1-xS与聚甲基丙烯酸甲酯形成的纳米复合物。
实验发现, ZnxCd1-xS复合物具有可调的发射波长。
通过调整Zn/Cd的摩尔比,形成的纳米复合物可以产生连续变化的发光波长,复合样品呈现不同的发光颜色。
这种纳米复合物可望用于电子发光器件中。
ParasN.Prasad等发现向半导体CdS与聚(N-乙烯咔吧唑)形成的杂化纳米复合物加入一定比例的4-氮苯基-L-脯氨酸和三羟甲苯基磷酸酯后,纳米复合物具有光折射性质。
其中CdS与聚(N-乙烯咔吧唑)构成电荷转移复合物,而发色团4-氮苯基-L-脯氨酸加入高分子中构成电子-光子发生器,三羟甲苯基磷酸酯则用于降低复合物的玻璃化转变温度。
催化活性 Nafion树脂,一种Perfluorinated离子交换高分子,常用作多相强酸催化剂,但由于高分子珠子的表面积太小,通常小于0。
02m2/g,催化活性受到很大的限制。
MarkA.Harmer等将粒子直径为20nm~60nm的Nafion树脂加入到多孔硅胶中形成纳米复合材料,由于复合材料的表面积增加到150m2/g~500m2/g,使复合材料的催化活性比原高分子提高了100倍。
高性能增强高聚物复合材料[16]纳米复合使材料比普通复合具有更优越的力学性能,它可作为聚合物一无机超韧高强结构材料,高温粘结剂和耐刮涂料等,如尼龙一6/蒙脱石已实现工业化,1990年日本丰田研究所已将此材料应用于汽车零部件,包装材料,1995年尤尼卡公司则将该材料应用于汽车引擎盖。
半导电和导电材料导电聚合物嵌入无机层状物的有机/无机纳米复合材料可成为电子导电或粒子导电材料,这类材料有明显的各向异性。
环氧乙烷聚合物硅酸盐系有机/无机纳米复合材料可用作固体电池的电解质。
V205和Sn02的有机/无机纳米复合材料是优良的半导体,己加工成型为透明电极。
电致发光或变色材料V205,Mo03,W03等无机层状物和PPy(聚吡咯)形成的嵌入型有机/无机纳米复合材料可制得电致发光材料和电致变色材料。
仿生材料仿生材料是当前材料科学中的前沿领域。
自纳米材料问世以来,仿生材料研究的热点已经开始向纳米复合材料转移。
目前已有少量仿生材料应用于医疗领域,如A1 203于生物相容性好、耐磨损、强度高,韧性比常规材料高等特性,而用来制作人工关节、人工骨、人工齿根等,纳米Zr02也可以制作人工关节、人工齿根等。
纳米复合材料各种制备方法介绍粉末冶金(PM)法肖等用PM法制备了纳米SiC颗粒增强铝基复合材料,材料的组织均匀而细小,材料的布氏硬度(40.6+)较纯铝制品提高20%,电阻率较纯铝制品提高456.0%。
真空蒸发惰性气体凝聚及真空原位加压(ICVCSC)法ICVCSC是在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷却镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒米粉烧结成块。
秦等用真空蒸发惰性气体凝聚及真空原位加压方法制备出粒度均匀,平均尺寸在10nm以下的纳米NiAl合金固体。
纳米NiAl合金具有较大的晶格畸变(1.2%)退火实验显示当退火温度低于800K时,晶格畸变没有明显下降且晶粒度没有明显长大。
当用多晶NiAl合金制成纳米结构后(晶粒尺寸小于10nm)磁特性由弱磁性向强磁性转变。
非晶合金晶化法非晶合金晶化法是将原料用急冷技术制成非晶薄带或薄膜,然后控制退火条件,在合金中生成纳米级晶粒。
邵等用铜模急冷法制得直径达8nm的棒状稀土 NiFeAl样品,测得起始晶化温度Tx 和熔点Tm分别为743K和823K,ΔTm=Tm-Tx=80K,Trx=Tx/Tm=0.90。
发现极小的ΔTm和高的Trx是具有良好非晶形成能力的主要原因。
通过控制大块状非晶样品的热处理工艺可以得到不同纳米晶比例的非晶/纳米晶双相材料。
其他合成方法制备金属基纳米复合材料的方法还有喷射与喷涂共沉积法、原位反应复合法、加盐反应法、反应喷雾沉积法、反应低压等离子喷射沉积法等。
纳米科技发展态势和特点:复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。
科学界普遍认为,纳米技术是21世纪经济增长的一台主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌,纳米技术将给医学、制造业、材料和信息通信等行业带来革命性的变革。
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。
世界上已有50多个国家制定了国家级的纳米技术计划。
一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。
各纳米科技强国比较而言,美国虽具有一定的优势,在纳米科技论文方面曰、德、中三国不相上下.。