任务书开题报告动机。
将电动机转子外壳直接与轮毂相连,将电动机外壳作为车轮的组成部分,并且电动机转子外壳集成为鼓式制动器的制动鼓,制动蹄片直接作用在电动机外壳上,省去制动鼓的结构,减轻了电动轮系统的质量.集成化设计程度相当高,电动轮结构如图 0.4所示。
TM4公司研制的这个电动轮系统的永磁无刷直流电动机性能非常高,其峰值功率可咀达到80kw,峰值扭矩为670Nm.最高转速为1385rpm,额定功率为18.5kw.额定转速为950rpm,额定工况下的平均效率可以达到96.3%。
国内,哈尔滨工业大学一爱英斯电动汽车研究所研制开发的EV96-1型电动汽车驱动电动轮也属于外转予型电动机。
该电动机选用的是一种“多态电动机”的永磁电动机,兼有同步电动机和异步电动机的双重特性,集成盘式制动嚣,采用风净敖热系统。
同济大学汽车学院试制的四轮驱动电动汽车“春晖一号”、“春晖二号一和“春晖三号"均采用四个直流无刷轮毂电动机,外置式盘式制动器。
比亚迪于2004年在北京车展上展出的ET概念车也采用了4个轮边电机独立驱动的模式。
中国科学院北京三环通用电气公司研制的电动轿车用直流无刷轮毂电机,又称电动车轮。
单个电动车轮功率为7.5kW,电压264V,双后轮直接驱动。
国内,哈尔滨工业大学一爱英斯电动汽车研究所研制开发的EV96-1型电动汽车驱动电动轮也属于外转予型电动机。
该电动机选用的是一种“多态电动机”的永磁电动机,兼有同步电动机和异步电动机的双重特性,集成盘式制动嚣,采用风净敖热系统。
同济大学汽车学院试制的四轮驱动电动汽车“春晖一号”、“春晖二号一和“春晖三号"均采用四个直流无刷轮毂电动机,外置式盘式制动器。
比亚迪于2004年在北京车展上展出的ET概念车也采用了4个轮边电机独立驱动的模式。
中国科学院北京三环通用电气公司研制的电动轿车用直流无刷轮毂电机,又称电动车轮。
单个电动车轮功率为7.5kW,电压264V,双后轮直接驱动。
图 0.1KAZ电动汽车图 0.2 Eliica电动汽车图 0.3 Eliica电动汽车图 0.4 TM4一电动轮系统本文研究所应用的减速驱动型电动轮,需要合适的减速器作为电动轮的减速装置。
原则上既可以选择可变速比齿轮减速器,也可以选择固定速比齿轮减速器。
虽然可变速比齿轮减速器传动具有以下优点:应用常规驱动电动机系统可以在低档位得到较高的启动转矩,在高档位得到较高的行驶速度,但是缺点就是体积大、质量大、成本高、可靠性低、结构复杂。
实际上,现在所有电动车都采用了固定速比齿轮变速器作为减速装置。
并把安装在电动轮轮毂内的定减速比减速器称为轮边减速器(Wheel Reducer)。
带轮边减速器电动轮电驱动系统能适应现代高性能电动汽车的运行要求。
轮边减速器将动力从原动机(此研究中即为轮毂驱动电机)直接传递给车轮,其主要功能是降低转速、增加转矩,从而使原动机的输出动力能够满足电动轿车的行车动力需求。
按照齿轮及其布置型式,轮边减速器有行星齿轮式及普通圆柱齿轮式两种结构。
这两种结构形式在工程中都已有成功应用,例如在奥地利微型越野汽车“Steyr-puch Haflinger"的断开式后驱动桥中就采用了普通圆柱齿轮式轮边减速器;在某些双层公交汽车的驱动桥中,为了降低车厢与地板的高度,有时也采用普通圆柱齿轮式轮边减速器作为汽车的第二级减速装置;日本开发的轻型轮式电机电动汽车Luciole,采用的是内转子高速无刷直流电动机.行星齿轮-鼓式制动器的驱动系统,也应用了轮边减速器;“太脱拉111R”重型汽车的贯通式中桥、法国索玛MTP型自卸汽车、斯太尔汽车后驱动桥等都采用了行星齿轮式轮边减速器;在电动汽车领域,在轮边减速器的应用上,主要以日本应庆大学开发研制的八轮轮边驱动电动汽车“KAZ”最为成功,为了使得电动机输出转速符合实际转速要求,KAZ的电动轮系统配置了一个传动比为4.588的行星齿轮减速器,图 0.5为KAZ的前、后电动轮系统的结构图,从图中可以看见行星减速器为传动主题的轮边减速装置。
(a)前轮(b)后轮图 0.5 KAZ电动轮系统结构图设计一种微型电动车用的轮边减速器,是为电动汽车的轮边驱动系统使用,工作力矩较小,但因没有主减速器而需要更大的减速比。
大型车辆的轮边减速器的结构型式可以为电动汽车的轮边减速器提供参考,缩小结构尺寸,而增大减速比,满足轮边驱动系统的使用要求。
二、设计(论文)的基本内容、拟解决的主要问题(一)主要设计内容行星齿轮减速器齿轮几何尺寸计算、减速器各级齿轮的校核、轴承选取及寿命计算、轴的设计、箱体设计。
第2章轮边减速器设计2.1 电动轮的类型及选择2.2 轮边减速器的传动方案第3章轮边驱动的参数确定及关键零部件的设计3.1 驱动电机性能参数的确定3.2 减速器关键零部件的设计3.3 轮边减速器的润滑3.4 轮边减速器零部件之间的装配关系第4章行星齿轮传动的传动结构的设计4.1 行星齿轮传动的均载机构4.2 行星齿轮传动的齿轮结构设计摘要随着能源危机的日益严重以及人们环保意识的不断增强,研究开发清洁、节能和安全的汽车成为汽车工业发展的方向。
其中电动汽车具有行驶过程中零排放、能源利用多元化和高效化以及方便实现智能等优点,使之成为新型汽车研发的重点之一。
本文以减速型电动轮驱动电动汽车的优势为出发点,设计了利于电动汽车使用减速型电动轮的轮边减速装置,对轮边减速器的结构进行了设计、研究,增强了电机内转子驱动型电动轮在电动汽车上的应用能力。
以行星齿轮系为轮边减速器的减速传动形式,在减速传动链的设计中,引入了均载设计来提升行星齿轮传动的优势;出于减小轮边减速器的重量及体积、节省材料的目的,对轮边减速器的行星传动系统进行了以体积为目标的优化设计;为便于制动装置及轮毂与轮边减速器安装,设计了轮毂支承件,在满足功能的同时也减少了零件数目;轮边减速器桥壳的巧妙设计使减速器及其轮毂支承件的安装变得更容易、受力也更合理,为前后轮悬架导向机构、转向拉杆及横向稳定杆提供了支点,更进一步保证所设计的轮边减速器能够精确地实现与电动汽车其它零部件的安装及联接, 保证所设计的轮边减速器满足整车行驶工况要求。
关键词:轮边减速器;电动汽车;电动轮;行星齿轮减速器;电动机ABSTRACTWith improving environmental protection consciousness and the serious energy crisis,to research and develop the clear, energy-saving and safe auto become the new direction of development of automobile industry. Electric vehicle, which has much advantages, such as no emission, pluralism and high-efficient of energy utilization, and conveniently realizing intelligence erc, is about to become one of the focal points in researching and developing new—type automobile.The design and research takes a wheel reduction unit applied on reduced wheel-drive electric vehicle as the subjective.Research for the type of structure has been done in this thesis which will contribute to the application capability of reduced electric wheel.Load balancing structure is introduced into the drive line design of the planetary wheel reducer to fulfill the advantage of planetary transmission.In order to decrease weight and volume as well as save to material,the researcher optimized the volume of the planetary transmission.For easy to assemble the break system and the wheel--hub while reducing components number, a connection supporting part is designed.The most particular design is the transmission housing with pivots for assembling the upper and lower control arm,the stabilizer as well as the steering linkage.Optimization of the suspension, steering system and stabilizer bar has made for assembling the wheel reducer more accurate,then the optimization result feedbacks to modify the reducer design .For the purpose of guaranteeing the strength of the wheel reducer in work.Key words: Wheel Reducer;Electric Vehicle;Electric Wheel;Planetary Gear Reducer;Electric Motor目录摘要 (IX)Abstract.............................................................................................................. I I 第1章绪论. (1)1.1 课题的来源和背景 (1)1.2 国内外研究现状 (2)1.3 本文的研究思路与内容 (6)第2章轮边减速器设计 (7)2.1 电动轮的类型及选择 (7)2.2 轮边减速器的传动方案 (10)2.3 本章小结 (17)第3章轮边驱动的参数确定及关键零部件的设计 (18)3.1 驱动电机性能参数的确定 (18)3.1.1 整车性能要求 (18)3.1.2 驱动电机参数计算(两轮驱动) (18)3.2 减速器关键零部件的设计 (21)3.2.1 行星齿轮传动齿数分配应满足的条件 (21)3.2.2 齿轮受力分析和强度设计计算 (23)3.2.3 齿面接触强度的校核计算 (24)3.2.4 其他相关零部件的设计计算 (28)3.3 轮边减速器的润滑 (32)3.4 轮边减速器零部件之间的装配关系 (32)3.5 本章小结 (33)第4章行星齿轮传动的传动结构的设计 (34)4.1 行星齿轮传动的均载机构 (34)4.2 行星齿轮传动的齿轮结构设计 (35)4.3 本章小结 (38)结论 (39)参考文献 (40)致谢 (41)附录A (42)附录B (46)第1章绪论1.1 课题的来源和背景随着汽车工业的高速发展,全球汽车总保有量不断增加,汽车所带来的环境污染、能源短缺,资源枯竭等方面的问题越来越突出。