合金轴瓦的安装
5.5
气 蚀
2.8
其 它
6.7
汽车轴瓦损坏的原因调查表
从上表可以看出,润滑油的清洁度和安装误差是损坏轴承的主要原因
大型组合瓦的检修步骤
一、确认主轴的与联轴器的联接标准达到要求,同时考虑刮瓦的减薄 量对对中度的影响。 二、确认各密封环的位置与叶片的间隙合适,轴向位移定位适中。 三、刮研瓦座,达到轴瓦的摩擦面与轴接触70%,即大面有点。不偏 斜、不翘曲等二元方位确认。 四、压间隙,测量总间隙,确认刮削量、平行度,确定检修方案。 四、粗刮下瓦,找大平,细刮,分小点。精刮,挤压成花。 五、压间隙确认刮研效果。 六、在允许的条件下垫高下瓦,测试上瓦的配合面接触程度。粗刮和 细刮。 七、最后确认刮研效果。 八、测量侧间隙,并刮削侧间隙。 九,处理轴面光洁度。同时清理油道、油池、密封面、气封等。 十、测量轴向间隙,调整垫片达到垂直度、受力均匀度的要求 十一、测量瓦座的顶间隙,加垫或紧固的方式保证瓦座的刚性。
之间就存在直接的摩擦,摩擦会产生很高的温度,虽
然轴瓦是由于特殊的耐高温合金材料制成,但发生直
接摩擦产生的高温仍然足于将其烧坏。轴瓦还可能由
于负荷过大、温度过高、润滑油存在杂质或
黏度异常等因素造成烧瓦。
轴瓦的形式和结构
径向滑动轴承的典型结构2
单材料、整体式 厚壁铸造轴瓦
多材料、对开式厚壁铸造轴瓦
多材料、整体式、薄壁轧制轴瓦
半径高过大时:轴瓦产生塑性变形、弹张量消失、配合压力反变小,其后果与过盈量
不足相似。
▶ 让轴瓦能够粘贴在壳体上,即使有负荷也不会产生轴瓦移动/动摇的情况。
故障原因
清洁度(异物) 润滑油供应不 足 38.3 11.1
安装误差
对中不良
超 载
比率/%
15.9
8.1
6.0
故障原因
比率/%
腐 蚀
5.6
制造精度低
+ 轴瓦的顶部间隙测量 + 轴瓦的顶部间隙采用压铅丝法进行测量。先将铅
丝放在下瓦的两侧和轴颈顶部,如图1-2(a)所
示,然后合上上瓦,并均匀地拧紧结合面螺栓,
随后再分解开,取出铅丝并测记其厚度。 则顶部
间隙为顶部铅丝厚度的平均值减去两侧铅丝厚度
的平均值。
+ 即:a=1/2(a1+a2)-1/4(b1+b2+b3+b4)。检查顶部间隙是否
轴承材料
一、基本要求
轴承材料性能应满足以下要求: 减摩性:材料副具有较低的摩擦系数。 ◆ 耐磨性:材料的抗磨性能,通常以磨损率表示。
◆ ◆ ◆
抗咬粘性:材料的耐热性与抗粘附性。
嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动表面发生刮伤或磨 粒磨损的性能。
◆
磨合性:轴瓦与轴颈表面经短期轻载运行后,形成相互吻合的表面形状 和粗糙度的能力(或性质)。
6)油孔及油槽的边缘必须去尽锐边、毛刺、尖角,并应尽量形成圆滑过渡结构。
Engine Oil input
Shaft
Shaft
▶ 把大量的油传达到主轴下瓦。 ▶ 提供给轴瓦内面润滑油
Bearing Housing
轴瓦结构要素的作用与要求
6.半圆周长(半径高)
轴瓦靠半圆周长过盈量固定在座孔内,它与座孔的配合靠过盈量产生径向压应力。 过盈量的大小直接影响轴承的工作的可靠性,故需严格控制。过盈量太小或太大都 将引起轴瓦失效(判定标准是Pr(接触应力)最小必须大于或于等10MPa) 。 半径高过小时:1)瓦背与座孔贴合不紧,热量不易传递。 2)瓦背与座孔贴合面有可能产生缝隙。 3)瓦背与座孔表面丧失“锁紧”能力。
出现楔形(顶隙的平均值是合格的),可将前后端的测 量值分别进行计算。即:前端顶隙=a1-(b1+b2)/2;后端 顶隙=a2-(b3+b4)/2 ;前后端的顶隙应相等。若不相等, 则证明顶隙出现楔形。
+ 轴瓦紧力的测量
+ 1 、轴承盖对轴瓦压紧之力称为轴瓦紧力。紧力的作用主要是保证轴
瓦在运行中的稳定防止轴瓦在转子不平衡力的作用下产生振动。
+ +
≥0.0010 Ф >50≤150 ≥0.0015 Ф>150≤300 ≥0.0020 如:轴的直径为180毫米,安装时气温20度,运行后温度 上升到160度,油温上升到40度,此时该轴在直径方向膨 胀了多少? (160-20-40)×0.18×0.015=0.27 0.27/180=0.0015
+ 二是润滑的原理:在转速的下方有油楔的生成,油膜由厚膜碾轧成薄
膜,在这个过程中受正压力的位置还有足够的厚度油膜。在油膜被挤 压向轴向逸出过程中完成油的润滑,同时带走磨下的锡削和热量。在 加速度完成后,轴在油膜上面摩擦转动。
+ 三是热膨胀原理:安装的时候和运行起来的时候温度差是确定间隙的
依据。温差有很多的影响因素。掌握这些变数才能准确的预留间隙和 紧力。一部分来自于原运行数据,一部分来自于相邻机组的运行状态 还有一大部分是来自于个人的分析判断。争取取得最合理的数字。因 为安装时还可能有数据的调整改变空间。
守如下原则:
1)保证润滑油及时到达工作表面, 而不至于中途分枝流失。 2)非特殊情况下,力求避免开设整 圈环形油槽。
通过壳体 向曲轴和轴瓦内面提供润滑油的通路。
轴瓦结构要素的作用与要求
5.油孔及油槽(续) 3)连杆轴瓦上片和主轴瓦下片由于负荷较重,尽量避免开设油孔及油槽。 4)开设油孔、油槽的部位应与整个油道设计良好配合,防止油道中润滑油发生压力波动,这种波 动是轴瓦产生气(穴)蚀的根源之一。 5)油孔、油槽一定只能开设在轴瓦低负荷部位。
目录
滑动轴承的检修要了解
三个原理
一是合金瓦轴承的工作原理: 在轴承的瓦背内侧浇注上1到2毫米的锡铅合金基料层,内 混有巴氏合金颗粒,在运行初期,轴表面的相对摩擦把较 软的基料磨掉,而镶嵌在基料里的巴氏合金颗粒显露出来 ,阻止了对基料的减磨,起到了支撑轴的作用,而磨去基 料后的间隙,变成储存润滑油的油膜空间。
确定轴瓦间隙
要细看轴瓦安装说明书 根据公式确定:顶间隙a=kd (d-轴直径,k为系数,圆筒瓦系
数为0.002,椭圆瓦为0.001),轴承的侧间隙一般情况下采用
b=a,在顶间隙较大时采用b=1/2a(圆筒瓦),在顶间隙较小 时采用b=2a(椭圆瓦)。
+ 3、根据经验数据确定一般情况下轴的直径*1-1.5‰ + Ф ≤50a + + +
合金轴瓦的检修
永远不要对客户说不, 客户需求就是我们的追求!
1
+ 合金瓦的修理,在整个机组的检修中是其中一部分,对机组的
了解和装配程度决定了对轴瓦处理内容。安装质量的好坏直接 影响到轴承的运转质量指标和周期。如果不了解机组状态,刮 瓦就没把握。所以,在刮瓦前的工作也是很关键的,如:联轴 器的对中精密度,两联轴器连接状态,转子的动不平衡量,转
+ 2 、 紧力的测量与轴瓦间隙的测量方法相同,只是放铅丝的位置不同,
测量紧力将铅丝放在轴承座的结合面与轴瓦的顶部处,如图1-2(c)
所示。紧力值等于两侧铅丝厚度的值与顶部铅丝厚度的平均值之差。 即c=1/4(B1+B2+B3+B4)-1/2(A1+A2),当C为负值时,表明轴瓦顶部有间 隙。
+ 3 、 轴瓦紧力的大小决定于轴承结构及轴
滑动轴承的主要类型 根据能承受载荷的方向,可分为向心轴承、推 力轴承、向心推力轴承。 (或称为径向轴承、
止推轴承、径向止推轴承)。
根据润滑状态,滑动轴承可分为:
1)不完全液体润滑轴承。
2)完全液体润滑轴承。
运动特点
滑动轴承工作时,轴瓦与转轴之间要求有一层很薄
的油膜起润滑作用。如果由于润滑不良,轴瓦与转轴
滑动轴承简介
滑动轴承:在滑动摩擦下工作的轴承。滑动轴承工作 平稳、可靠、无噪声。在液体润滑条件下,滑动表面ห้องสมุดไป่ตู้
被润滑油分开而不发生直接接触,还可以大大减小摩
擦损失和表面磨损,油膜还具有一定的吸振能力。轴 被轴承支承的部分称为轴颈,与轴颈相配的零件称为 轴瓦。
为了改善轴瓦表面的摩擦性质而在其内表面上电镀的减摩材 料层称为轴承衬(减磨层或过渡层)。轴瓦和轴衬的材料 统称为滑动轴承材料。滑动轴承应用场合一般在高精度、 重载工况条件下,或者是维护保养及加注润滑油困难的运 转部位。
座孔直径(轴径尺寸) φ26~φ120(φ23~φ113) φ120~φ170(φ113~φ163) 最小弹开量 0.5(0.2) 0.75(0.5) 弹量公差范围 【1.5】 【2.0】
φ170~φ260(φ163~φ252)
平瓦 φ260~φ320(φ252~φ310) φ320~φ450(φ310~φ434) φ450~φ800 φ800~φ1200
+ 轴瓦的两侧间隙测量
+ 轴瓦两侧间隙的测量是用塞尺在轴瓦水平结合面四
个角(常称瓦口)上测量。塞尺插入的深度约为轴
颈的1/10-1/12。由于侧隙是楔形的,故塞尺不可 插入过深。
+ 下瓦侧隙对称度的检查 + 1) 轴瓦的间隙不仅要求瓦口处的间隙合格,而且要
求侧隙的形状是一规则的楔形。
2) 测量下瓦间隙对称度时,先用最薄的塞尺沿四个瓦口插入, 直到插不动为止,取出塞尺,记录塞尺的深度,测后将测值 列表进行分析。
轴瓦结构要素的作用与要求(单体瓦)
轴瓦结构要素示意图
定位唇
钢背层
合金层 油槽 内倒角 油孔内倒角 油孔 半径高 外倒角
轴瓦结构要素的作用与要求
1、厚度 1)壁厚包括钢背厚度及合金层、Ni栅层及表面镀层厚度之和,即总厚度。 2)合金厚度:合金层厚度越大,轴承耐疲劳性能越差,通常产品的合金厚度设定在0.2~0.5