设备状态监测和故障诊断1、齿轮啮合频率产生的机理及齿轮故障诊断方法1.1齿轮啮合频率产生的机理啮合频率是对一对相互啮合的齿轮而言的,对单个齿轮谈啮合频率是没有意义的。
另外,齿轮传动的特点是啮合过程中啮合点的位置和参与啮合的齿数都是周期性变化的,这就造成了齿轮轮齿的受力和刚度成周期性变化,由此而引起的振动必然含有周期性成分。
对于直齿圆柱齿轮,在齿轮啮合过程中,由于单、双齿啮合区的交替变换、轮齿啮合刚度的周期性变化、以及啮入啮出冲击,即使齿轮系统制造得绝对准确,也会产生振动,这种振动是以每齿啮合为基本频率进行的,该频率称为啮合频率,其计算公式如下:11226060m z n z n f == 式中, z 1、z 2 ————主、从动齿轮的齿数; n 1、n 2 ————主、从动齿轮的转速,r/min 。
对于斜齿圆柱齿轮,产生啮合振动的原因与直齿圆柱齿轮基本相同,但由于同时啮合的齿数较多,传动较平稳,所产生的啮合振动的幅值相对较低。
对于没有缺陷的正常齿轮,齿轮啮合频率产生的原因主要有啮合刚度的变化、啮合冲击和节线冲击。
1.2引起齿轮震动的部分原因1.2.1啮合刚度的变化齿轮的啮合刚度是指整个啮合接触区中参与啮合的各对轮齿的综合刚度。
单对轮齿的等效刚度为:1212K K K K K =+式中,K1、K2——主、从动齿轮的单齿刚度。
刚度的变化主要有两个方面:一是在齿高方向随着啮合位置的变化,参与啮合的单一轮齿的刚度发生了变化;二是参加啮合的齿数随时间作周期性变化。
例如对于重合度在1到2之间的渐开线直齿轮,在节点附近是单齿啮合,在节线两侧单部位开始至齿顶、齿根区段为双齿啮合。
显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理,单齿啮合时啮合刚度较小。
从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的啮合刚度就变化一次。
啮合刚度的变化频率与齿轮的啮合频率相等,说明啮合刚度的变化是啮合频率产生机理之一。
1.2.2啮合冲击齿轮在啮合过程中,由于轮齿承载产生弹性变形,使得轮齿进入啮合点和退出啮合点与理论值发生偏差,因而在进入啮合和退出啮合时均会发生啮合冲击,啮合冲击的频率与啮合频率相等。
说明啮合冲击也是啮合频率产生机理之一。
1.2.3节线冲击齿轮在啮合过程中,轮齿表面既有相对滚动又有相对滑动。
对于主动轮,啮合点从齿根移向齿顶,啮合半径逐渐增大,速度增高,而从动轮则恰好相反。
主动轮和从动轮在啮合点上的速度差异形成了两者之间的滑动。
在齿根部分,主动轮上啮合点的速度小于从动轮,因此滑动方向向下;而在齿顶部分,主动轮上啮合点的速度大于从动轮,因此滑动方向向上;在节线处,两轮上啮合点的速度相等,相对滑动速度为零。
因此摩擦力在接线处改变了方向,形成了节线冲击。
有节线冲击的形成原理可知,节线冲击的频率也与啮合频率相等。
说明节线冲击也是啮合频率产生机理之一。
1.3齿轮故障诊断方法齿轮及齿轮箱在机械设备中是一种非常关键的零部件,这种零部件非常通用,齿轮及齿轮箱主要是起连接和传递动力的作用。
齿轮在工作过程中,齿轮、轴承和轴都会产生振动信号,当振动信号产生了不同形式的变化时,则预示着零件可能发生了故障。
振动信号一般都会携带运行状态信息,利用这些运行状态信息进行故障模式的识别是机械故障诊断中常用的方法。
而这些方法中所用到的信号处理的主要数学工具有傅立叶变换、小波变换、相关分析等。
随着工程应用和科学研究的不断提高,所涉及到的监测诊断问题日趋复杂和困难。
1.3.1齿轮的常见故障通常齿轮在运转时,由于操作维护不善或制造不良会产生各种形式的故障。
而故障形式又随运转状态、热处理、齿轮材料等因素的不同而不同,常见的齿轮故障形式有齿面接触疲劳和弯曲疲劳与断齿、齿面胶合和擦伤、齿面磨损等。
(1)齿面磨料磨损。
润滑油不清洁、磨损产物以及外部的硬颗粒侵入接触齿面都会在齿面滑动方向产生彼此独立的划痕,使齿廓改变,侧隙增大,甚至使齿厚过度减薄,导致断齿。
(2)齿面黏着磨损。
重载、高速传动齿轮的齿面工作区温度很高,如润滑不好,齿面间油膜破坏,一个齿面上的金属会熔焊在另一个齿面上,在齿面滑动方向可看到高低不平的沟槽,使齿轮不能正常工作。
(3)齿面疲劳磨损。
疲劳磨损是由于材料疲劳引起,当齿面的接触应力超过材料允许的疲劳极限时,在表面层将产生疲劳裂纹,裂纹逐渐扩展,就要使齿面金属小块断裂脱落,形成点蚀。
严重时点蚀扩大连成一片,形成整块金属剥落,使齿轮不能正常工作,甚至使轮齿折断。
(4)轮齿断裂。
轮齿如同悬臂梁,根部应力最大,且有应力集中,在变载荷作用下应力值超过疲劳极限时,根部要产生疲劳裂纹,裂纹逐渐扩大就要产生疲劳断裂。
轮齿工作时由于严重过载或速度急剧变化受到冲击载荷作用,齿根危险截面的应力值超过极限就要产生过载断裂。
1.3.2齿轮的振动特性在齿轮运转的状态下,随着内部故障的发生和发展,必然会产生振动上的异常。
经实践证明,振动分析在齿轮故障检测的方法中是一种最有效的方法。
当齿轮处于正常或异常状态时,啮合频率的振动部分及其倍频总是存在的,但这两种状态下的振动水平是有差异的。
如果仅仅依靠对齿轮振动信号的啮合频率和它的倍频成分的差异来判别齿轮的故障是远远不够的,因为故障对振动信号的影响往往是多方面的,这其中就包括幅值调制、频率调制和其他的频率成分。
(1)刚度变化引起的振动在啮合过程中,由于啮合点的位置改变;由于参加啮合的齿数改变,啮合刚度要发生改变,这种改变每转动一齿就要重复一次,这种频率就是上节讨论的啮合频率。
(2)齿轮误差引起的振动调幅振动——频率等于啮频、幅值受误差调制的调幅简谐振动。
这是有误差的齿轮在时域中振动信号的显著特征。
调频振动——齿轮误差除产生幅值受调制的常规振动外,必然还引起转速波动,影响啮合频率,出现频率受误差调制的现象。
可以证明由误差产生的调频振动与调幅振动一样,在谱图上也是在一系列啮频谱线两侧产生对称的一系列边频谱线组成的边频带,边频的间隔等于误差的频率。
由于调幅、调频是同时出现的,所以有误差的齿轮在谱图上的边频带应为两种调制单独作用时边频成分的叠加,由于边频成分具有不同的相位,所以叠加后边频带的对称性就不再存在了(3)齿轮固有频率的振动由于啮合时齿间撞击必然引起齿轮的轴向固有频率自由衰减振动和扭转固有频率自由衰减振动,固有频率在高频段,通常在1~10kHz内。
(4)齿轮损伤引起的振动(齿轮的故障振动)有损伤的齿轮和有误差的齿轮一样,有相同的振动特征:在低频段产生调制效应有边频带,但幅值明显增大;在高频段有损伤的齿轮激发的固有频率振动也明显增强。
齿轮故障振动的这些特点是我们诊断齿轮故障的有利依据。
1.3.3齿轮故障诊断的常用方法(1)时域平均诊断时域波形对故障反映直观、敏感,特别是局部损伤最为明显,因为局部损伤在时域中为短促陡峭的幅值变化,容易识别。
但在频域中由于能量十分分散、幅值变化很小,却不易识别。
时域平均法诊断首先要采用时域平均技术,排除各种干扰,分离出所需齿轮的振动信号,然后才可根据分离出来的信号直接观察波形,确定齿轮的损伤。
当然必要时也可进行频谱分析或其他分析。
信号同步平均的原理是按齿轮每转一周按脉冲的周期间隔截取信号,然后进行分段叠加处理,以消除随机信号和其它非周期信号的干扰影响。
这种方法可以有效降低其他部件和振动源对于信号的影响,提高信噪比。
(2)细化谱分析法 齿轮的振动频谱图包含着丰富的信息,不同的齿轮故障具有不同的振动特征,其相应的谱线也会发生特定的变化。
细化谱分析法就是通过采用频率细化技术来增加频谱图中某些频段上的频率分辨率,即所谓的“局部频率扩展”法。
在齿轮故障信号中,调制后得到的边频含有丰富的故障信息,但是在一般的频谱图上往往又找不出清晰、具体的边频,究其原因是频谱图的频率分辨率太低。
频谱图上的频率分辨率则是由谱线和最高分析频率决定的,具体关系为下式://N c s f f n f ∆==式中:f ∆——频率间隔,即频率分辨率;c f ——分析频率范围,即最高分析频率;s f ——采样频率,一般取s f =2.56c f ;n ——谱线条数;N ——采样点数。
(3)倒频谱分析法 有一对齿轮啮合的齿轮箱,在它的振动频谱图上,在啮频分量及其倍频分量两侧有两个系列边频谱线,一个是边频谱线的相互间隔为主动齿轮的转频;另一个是边频谱线的相互间隔为被动齿轮的转频。
如果两齿轮的转频相差不多,这两个系列的边频谱线就十分靠近,即使采用频率细化技术也很难加以区别。
有数对齿轮啮合的齿轮箱,在它的振动频谱图上,边频带的数量就更多,分布更加复杂,要识别它们就更加困难了。
比较好的识别方法是倒频谱分析法,因为边频带具有明显的周期性,倒频谱分析法能将谱图上同一系列的边频谱线简化为倒频谱图上的单根或几根谱线,谱线的位置是原谱图上边频的频率间隔,谱线的高度反映了这一系列边频成分的强度,因此使监测者便于识别有故障的是哪个齿轮及故障的严重程度。
倒频谱分析又称二次频谱分析,对于同时有数对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合都将产生边带频,几个边频带谱交叉分布在一起,仅进行频率细化分析是不行的,还需要进一步做倒频谱分析。
倒频谱能较好地检测出功率谱上的周期成分,将原来谱上成簇的边频带谱线简化为单根谱线,便于观察。
而齿轮发生故障时的振动频谱具有的边频带一般都具有等间隔的结构,利用倒频谱这个优点,可以检测出功率谱中难以辨识的周期性信号。
倒频谱还可以将输入信号与传递函数区分开来,便于识别;还能区分出因调制引起的功率谱中的周期量,找出调制源。
(4)边频带分析法啮频振动分析主要用来诊断齿轮的分布故障(如轮齿的均匀磨损),对齿轮早期局部损伤不敏感。
大部分齿轮故障是局部故障,它使常规振动受到调制,呈现明显的边频带。
根据边频带的形状和谱线的间隔可以得到许多故障信息,所以功率谱边频带分析是普遍采用的诊断方法。
边频带出现的机理是齿轮啮合频率z f 的振动受到了齿轮旋转频率r f 的调制而产生,边频带的形状和分布包含了丰富的齿面状况信息。
一般从两个方面进行边频带分析:一是利用边频带的频率对称性,找出z r f nf 的频率关系,确定是否为一组边频带。
二是比较各次测量中边频带振幅的变化趋势。
2、滚动轴承故障的特征频率推导计算当轴承元件的工作表面出现局部缺陷时,会以一定的通过频率(取决于转频、轴承型号)产生一系列的宽带冲击,称为轴承的“通过频率”或“故障频率”,实际中滚动轴承故障振动监测就是检测这个频率。
下面以角接触球轴承为例,通过分析轴承各元件之间的相对运动关系来推出轴承故障特征频率的计算公式。
图2.1 上图所示为滚动轴承各元件之间运动关系示意图。
为简单起见,设轴承外圈固定,内圈的旋转频率为s f ,轴承节径为D ,滚动体直径为d ,接触角为a ,滚动体个数为z ;并假定滚动体与内外圈之间纯滚动接触。