中南大学《过程控制仪表》课程设计报告设计题目 HPF脱硫工艺流程设计指导老师王莉吴同茂设计者专业班级设计日期 2011年6月目录第一章过程控制仪表课程设计的目的与意义.........................................- 2 -1.1课程目的.................................................................................- 2 -1.2 课程设计的基本要求 ................................................................- 2 -1.3 课程设计的地位及作用.............................................................- 3 - 第二章课程设计实验.........................................................................- 4 -2.1控制系统装置(压力控制系统) .....................................................- 4 -2.2 控制系统的控制要求及PID参数整定方法...................................- 5 -2.3 控制系统的实验调试 ................................................................- 6 - 第三章HPF脱硫工艺流程系统设计 .................................................... - 13 -3.1 控制系统工艺流程 ..................................................................... - 13 - 3.2 设计内容及要求......................................................................... - 14 - 第四章系统设计构思 ........................................................................ - 15 -4.1 设计思想 ............................................................................ - 15 -4.2 总体设计流程图................................................................... - 15 -4.3 硬件设计概要...................................................................... - 16 -4.4 硬件选型............................................................................ - 16 - 第五章软件设计............................................................................. - 23 -5.1 软件设计流程图及其说明............................................................ - 23 - 第六章系统调试中遇到的问题及解决方法.......................................... - 27 -6.1 调试单闭环流量控制系统时遇到的问题.......................................... - 27 - 6.2 调试流量比值控制系统时遇到的问题 ............................................. - 28 - 第七章实验心得............................................................................... - 30 -第一章过程控制仪表课程设计的目的与意义1.1课程目的本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。
其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。
课程设计的主要任务是设计工业生产过程经常遇到的压力、流量、水位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。
1.2 课程设计的基本要求本课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。
基本要求如下:1. 掌握变送器功能原理,能选择合理的变送器类型型号;2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;3. 掌握PID调节器的功能原理,完成相应的压力、流量、水位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。
4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、水位)设计其控制系统。
1.3 课程设计的地位及作用在工程建设中对系统的分析与设计是一个极为重要的环节,是工程项目实施的依据。
课程设计就是以模拟工程实践中的任务而进行的对学生综合能力的考核。
在实际的工程设计中,没有一个成熟的工程设计思路,就不可能有一个良好的实施结果,甚至会导致工程项目的失败。
作为自动化专业的学生,除了要有坚实的理论基础外,还必须掌握一些扎实的工程方面的知识,才能成为合格的自动化工程技术人员。
通过此次的课程设计,让我们能建立起过程控制工程设计的概念,对过程控制工程设计有一整体的了解。
特别是在老师的指导下,进行自控工程设计的训练,使我们在毕业后走上工作岗位,如果在自控工程领域工作,可大大缩短熟悉的过程。
可以说自控工程设计是我们过控专业学生的一项基本功,今后无论从事本学科领域的哪方面工作,都是极为有用的。
课程设计是密切结合过程工业实际的实践环节之一,是学习完《过程控制仪表》课程后进行的一次全面的综合练习。
其目的在于加深对过程控制工程设计思想的理解,掌握过程控制领域常用和有效的控制方案和控制系统,掌握过程工业典型操作单元的控制方案和系统特点;并接受严格和系统的实验操作训练,从而为以后的毕业环节工作和担负实际工程任务打下良好和坚实的基础。
第二章课程设计实验本次课程设计实验是在液位、压力、流量等系统中进行选择,我们选择的是压力控制系统。
2.1控制系统装置(压力控制系统)该装置由三个互相串联的不同大小的密闭压力容器和针型阀、压力及流量等检测变送仪表组成,配套的仪表屏上安装了控制、显示等仪表,并配有带连接信号插座孔的工艺模拟流程图。
工艺过程模拟流程图如图2.1所示。
图2.1 带连接信号插座孔的压力装置工艺模拟流程图上图2.1中,标有字母的方块为各种仪表,○为各仪表输入、输出信号的单线接插件的插座孔(+,-插孔)。
其中:C:控制器(调节器)。
该装置配有三个单回路调节器C1、C2和C3,控制输出信号为4~20mA,每个调节器设有三对插座孔(+,-插孔)。
其中:PV孔为测量值输入,SV孔为外设定输入或阀位反馈信号输入,O孔为调节器输出。
R:记录仪为无纸3通道记录仪,输入信号4~20mA,其中R1孔为1号通道,R2孔为2号通道,R3孔为3号通道。
每个通道有两个插座孔,其中上孔(+)接变送器来的信号,下孔(-)用来转接到其他仪表作为输入信号,注意不能接错。
PT:压力变送器。
压力变送器为LSYB,1号~3号输入量程均为0~80KPa,变送输出为4~20mA。
VL:电子式电动调节阀为电子小流量调节阀,电动调节阀输入4~20 mA电流信号,对应阀门输出开度0~100%。
FT:流量计。
流量计是一种为LGJ-6型的玻璃浮子流量计,输入流量为0~3m3/h,无信号变送输出,只有浮子指示。
V1~2和I1~2 :两路电压/电流转换器。
其中V1为第1路电压输入信号端,I1 为第1路电流输出信号端,V2为第2路电压输入信号端,I2 为第2路电流输出信号端,O上孔(+插孔)接电压/电流转换器来的正信号,下孔(-插孔)接电压/电流转换器来的负信号,不能接错。
本装置有三个检测变量(1号气罐、2号气罐、3号气罐罐内压力),可从中选择一至二个为被控变量。
有两个可控制的变量(两个经调节阀的压缩空气流量),一般,支路1流量作为操作变量通路,支路2则为扰动输入通路。
在确定被控变量、操作变量、主要扰动和控制方案后,只要在模拟控制流程图上的插座孔进行不同的连接,就能方便、迅速地组成不同的控制回路。
2.2 控制系统的控制要求及PID参数整定方法1. 控制系统的控制要求(1)理解PID控制算法及P、I、D各参数的含义及作用;(2)用工程的方法(看曲线,调参数)整定调节器控制规律及PID参数,并观察PID参数对系统动态、静态性能的影响。
(3)测取流量过程控制系统的动态、静态特性;具体要求:超调量σ<20%,调节时间Ts≤100s,余差<1%2. PID参数整定一般原则(1)PID调试方法一般原则: 在输出不振荡时,增大比例增益P。
在输出不振荡时,减小积分时间常数Ti。
在输出不振荡时,增大微分时间常数Td。
(2)PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:压力P: P=30~70%,T=24~180s3. PID参数整定方法(1)首先只整定比例部分。
即将比例系数由小变大,并观察相应的系统响应,知道得到反应快,超调小的响应曲线。
如果系统没有静差或静差已小到允许范围只内,并且响应曲线已属满意,那么只须用比例调节器即可。
(2)如果在比例调节的基础上系统的静差不能满足设计要求,则须加入积分环节。
整定时首先置积分时间TI为一较大值,并将经第一步整定得到的比例系数略微缩小,然后减小积分时间,使在保持系统良好动态性能的情况下,静差得到消除。