涂层原理介绍
Page 6
Business Unit Coating Services / June 2007
2. Arc Ion Plating (AIP) – Principle 电弧镀 - 原理
Substrate bias基础偏压
Principle原理
1. An arc discharge vaporizes
4
droplets almost all emitted at angles of < 45°溶液向侧面 流动,形成液滴, 。 向两边呈45 C角
Atom or ion 原子或离子
Droplets flight direction 液滴,形成方向 Droplets 液滴
Page 10
Business Unit Coating Services / June 2007
Introduction of PVD coating technology PVD 涂层工艺介绍
The coating formation consists of three main phases 涂层形成的三个主要阶段
1.
Vaporization蒸发
2.
Particle transport in the plasma 等离子环境中的粒子运动
3.
Condensation 凝结
Working gas inflow 工作气体流入
+ +
Electrons电子 Ions离子 (+/-)
Bias偏压
Energy 能源
+
Atoms原子
Molecules 分子
+ -
+
-
+
Output materials 需要的材料 (target, cathode, ingot, etc. 靶材,阴极,铸块)
2
target material in the arc root (= cathode spot) 在电弧电源(阴极点) 上靶材材料蒸发
Target = cathode 靶材=阴极
Plating 电弧镀 很难避免
Melt flows to the side,
3
Vapor bubble bursts Releasing vapor particles 蒸发气泡破裂,蒸发离子释放 (atoms, ions原子,离子)
Technique 技术 Coating material vaporization 涂层材 料,蒸发 Ionization efficiency 离子化率 Key properties 主要特征
Very smooth coatings, especially suitable for plastics processing 很光滑,特别适合塑料处 理工艺
+ -
3. Magnetron Sputtering (MSIP) - Influence of the magnetic field 磁控溅射 - 磁性区的影响 Magnetic field lines 磁性区的射线 – The electron paths are lengthened by magnetic fields. Electrons “spiral” around the magnetic field lines. This increases the impact rate and the plasma density. 电子路径在磁性区域中被拉 长。电子沿着磁性区域的射 线呈螺旋状。这增加了冲击 率和离子密度。 – More ions are produced and the amount and/or geometry of the material removed can be varied 更多的离子产生了,并且他 A = Anode 阳极 们的数量和运动的几何形态 可以是多样化的 – Most widely used sputtering technique. 最广泛使用的是溅射技术
Coating material
Cold plasma 冷等离子体
Radicals 原子团
Reactive gas Inflow 反应气体流入
Base material Tool 基体材料 (substrate)
Page 2
Business Unit Coating Services / June 2007
3.
Magnetron Sputtering 磁控溅射(MSIP)
Mechanical机械的
5 - 10%
Page 3
Business Unit Coating Services / June 2007
1.
Ion Plating - Electron beam vaporization, principle 离子镀 - 电子束蒸发,原理
1.
Ion Plating 离子电镀 (Balzers technique 巴尔查斯技术)
Plasma等离子 / Electron beam电子束
50 %
2.
Arc Ion Plating电弧镀 (AIP)
Electric arc电弧
> 90 %
Rough coating, high hardness, high adhesion 粗糙,高硬度,高结 合力 Relatively smooth surface, low coating temperature 相对光滑的表面,低 涂层温度
Principle原理 1. Ions from a glow discharge are bombarded at high energy onto the coating material 热放电形成离子带着高能量轰击 涂层材料 2. Atoms are “knocked out” of the target surface and deposited on the substrate 原子不能进入靶材表面,并在基 体上沉积 3. The process runs in a vacuum in order to obtain the glow discharge and facilitate the transport 工艺在真空环境中进行以进行热 放电和离子的自由运动 4. Non-conducting materials are sputtered using RF (13.5MHz) or MF (20-200kHz). 绝缘的材料通过RF (13.5MHz) 或 MF (20-200kHz)被溅射。
Three main PVD coating techniques have been established in the market 市场上的三种主要的PVD涂层技术 The coating techniques are mainly characterized by the type of vaporization 涂层技术分类主要依据蒸发方式不同而分
1.
Ion Plating - Plasma beam vaporization 离子镀 - 等离子束蒸发 Electron-beam source 电子束源
Principle原理:
1. Titanium is thermally vaporized and ionized by an electron beam (200A)钛被热 蒸发,并被电子束离子化 ( 200A) 2. The substrates are held at a negative voltage to attract the ions 基体被固定在负电 压上以吸引离子 3. The (positive) ions react with the nitrogen that is fed in to form titanium nitride 正离子 与氮气反应并形成钛涂层
3. Magnetron Sputtering (MSIP) – Principle 磁控溅射 - 原理
Substrate bias基础偏压
TiN coating 氮化钛涂层
Substrate
TiN
Ar + N2 +
+ Target靶材 (e.g. Ti例.钛)
- +
Page 11 Business Unit Coating Services / June 2007
Page 4 Business Unit Coating Services / June 2007
Electron beam 电子束
1.
Ion Plating - Electron beam vaporization 离子镀 - 电子束蒸发
Page 5
Business Unit Coating Services / June 2007
• •
Most widely used technology in tool coating 在工具涂层中被广泛运用的技术 Advantages优势 – High vaporization rates (rapid coating) 高蒸发率(快速涂层) – High ionization 高离子化率 – Relatively insensitive to soiling 对污渍反应相对迟钝 – Stable processes 工艺稳定 Disadvantages 劣势 – Droplets from target material are deposited at the same time 同时有靶材材 料的液滴沉积
microscopic areas of the target. (“Cathode root”, “Spot”) 靶材表面的微观区域放电蒸发( “阴极电源”,“斑点” 2. The arc moves about, eroding the target in the process 在电弧的运动过程中,侵蚀靶材 3. The ionized target constituents are accelerated by a bias voltage on the substrate 离子化的靶材成分通过偏压加速 在基体上的运动