影响接触角测定的因素
2、影响接触角测定的因素
• 前面介绍了一些常用的测定接触角的方法,实施时 应注意以下两个问题:平衡时间和体系温度的恒定, 当体系未达平衡时,接触角会变化,这时的接触角 称为动接触角,动接触角研究对于一些粘度较大的 液体在固体平面上的流动或铺展有重要意义(因粘 度大,平衡时间长)。同时,对于温度变化较大的 体系,由于表面张力的变化,接触角也会变化,因 此,若一已基平达平衡的体系,接触角的变化,可 能与温度变化有关,简单判断影响因素的方法是, 平衡时间的影响一般是单方向的,而温度的波动可 能造成γ的升高或降低。
A
11
固体的润湿性质
基体性质关系不大。因此,当表面层的基团相同时不管基 体是否相同,其γ c 大致相同。 3、高能表面的自憎现象
虽然许多液体可在高能表面上铺展,如煤油等碳氢化合 物可在干净的玻璃,钢上铺展,但也有一些低表面张力的 液体不能在高能表面上铺展。
出现这种现象的原因在于这些有机液体的分子在高能表 面上吸附并形成定向排列的吸附膜,被吸附的两亲分子以 极性基朝向固体表面,而非极性基朝外排列从而使高能表 面的组成和结构发生变化。即从高能表面变成低能表面,
②接触角滞后及原因
指前进接触角与后退接触角之差称为接触角滞后(θA-θR)
A
2
影响接触角测定的因素
造成接触角滞后的主要原因有: a.表面不均匀
表面不均匀是造成接触角滞后的一个重要原因 若固体表面由与液体亲合力不同的两部分a、b组 成,则液体对复合表面的接触角与对两种纯固体 表面成分自身的接触角的关系是: COSθ=XaCOSθa+XbCOSθb Xa、Xb指a、b的 摩尔分数,θa、θb指液体在a固体和b固体上的 接触角。
作图,
A
9
固体的润湿性质
可得一很好的直线,将直线外推至COSθ=1处(θ=0), 相应的表面张力将为此固体的润湿临界表面张力,称为 γc、γc表示液体同系列表面张力小于此值的液体方可在 该固体上自行铺展,即S=0,若为非同系列液体,以 COSθ对γgl 作图通常也显示线性关系,将直线外推至 COSθ=1处,亦可得γc。
近年来,随着高聚物的广泛应用,低能表面的润湿 问题越来越引起人们的重视,如某些高聚物做成的生
产用品和生活用品,就要求其能很好地为水所润湿( 加入某些无机氧化物可能是有效的办法),塑料电镀,
降解等也需要解决润湿问题。
Zisman等人首先发现,同系列液体在同一固体表面
的润湿程度随液体表面张力的降低而提高(γ↓ , θ↑ ,COSθ ↑,S=γgl(COSθ-1)若以COSθ对γgl
显然,r越大,表面越不平,这时,应用润湿方程
时应加以粗化较正,rsgsl lgcos',' 为粗糙表面
上的接 触角,将上式与无粗化的润湿方程相比可得 cos '
r
cos 当θ<90°表面粗化将使θ′<θ,当θ>90°, 表面粗化将使θ′>θ(接触角变大,润湿性变 差)。
A
6
3、固体粗化后,可使润湿性变 好(如电镀时需表面充分润湿),而对于不润湿的固体表面, 表面粗化,将使θ变大,润湿变差(对一些 高聚物表面,可通 过粗化使其防水能力提高)。 固体的润湿性质 1、低能表面与高能表面
(2)表面张力低于100mN/m者称为低能固体,这 类固体不易被液体所润湿,如有机固体、高聚 物固体。
一般的无机物固体(陶瓷、金属等)的表面能约 在500~5000mN/m,其数值远远大于一般液体的 表面张力,因此,液体与这类固体接触后,使固 体表面能显著降低。
A
8
固体的润湿性质
2、低能表面的润湿性质
γc是表征固体表面润湿性的经验参数,对某一固体而 言,γc越小,说明能在此固体表面上铺展的液体便越少, 其可润湿状越差(即表面能较低)。 从实验测得各种低能表面的γc值,并总结出一些经验律:
A
10
固体的润湿性质
①固体的润湿性与分子的极性有关,极性化合物的可润湿性 明显优于相应的完全非极性的化合物(如纤维素的γc=40~45, 而聚乙烯为31)。
从润湿方程可以看出,当θ<90°,可润湿,这时 sg sl ,lg
即要求 sg gl ,可见,低表面张力的液体容易润湿高表面能 的固体,考虑到 g l 的数值均在100mN/m以下,常以此为界,将 固体分为两类:
A
7
固体的润湿性质
(1)表面张力大于100mN/m者称为高能固体,这 些固体易被液体所润湿,如无机固体、金属及其 氧化物等。
A
4
影响接触角测定的因素
b.表面不平
表面不平也是造成接触角滞后的主要因素,若将一 玻璃粗化后,将一水滴滴在倾斜玻璃上,则出现接 触角滞后。
Wenzel研究了固体表面粗度对润湿性的影响,他指 出,一个给定的几何面经粗化后,必然使表面积增 大,若以r表示粗化程度,则
r=A(真实)/A (表观)
A
5
影响接触角测定的因素
A
3
影响接触角测定的因素
实践表明,前进角一般反映与液体亲合力较弱的那 部分固体表面的润湿性,因此,θA较大(COSθ 小),而后退角反映与液体亲合力较强的那部分固 体表面的性质,因此,θR较小。对于一些无机固体, 由于表面能较高,固而极易吸附一些低表面能的物质 而形成复合表面,因此,造成液体对这种复合表面形 成的接触角滞后现象,可见,欲准确测定一种固体的 接触角,必须保证固体表面不受污染。
②高分子固体的可润湿性与其元素组成有关,在碳氢链中氢 被其他原子取代后,其润湿性能将明显改变,用氟原子取代 使γc变小(如聚四氟乙烯为18),且氟原子取代越多,γc越 小(聚-氟乙烯为28)。而用氯原子取代氢原子则使γc变大 可润湿性提高,如聚氯乙烯的γc为39,大于聚乙烯的31。
③附有两亲分子单层的高能表面显示出低能表面的性质,这 说明决定固体表面润湿性能的是其表面层的基团或原子,而与
A
1
影响接触角测定的因素
除平衡时间和温度外,影响接触角稳定的因素还有接触角滞
后和吸附作用。
(1)接触角滞后
①前进接触角和后退接触角
前进接触角,以液固界面取代固气界面后形成的接触角为前
进接触角θA,如将固体板插入液体中;后退接触角则相反, 即以固气界面取代固液界面后形成的接触角叫后退接触角,用
θR表示,如水滴在斜玻璃板上,流动可形成前进接触角和后 退接触角。