电子传递与氧化磷酸化
2
Cells need energy to do all their work
To generate and maintain its highly ordered structure (biosynthesis of macromolecules). To generate all kinds of movement. To generate concentration and electrical gradients across cell membranes. To maintain a body temperature. To generate light in some animals.
6
生物氧化
概念:糖类、脂肪、蛋白质等有机物质在细胞 中进行氧化分解生成CO2和H2O并释放出能量的 过程称为生物氧化(biological oxidation),其实 质是需氧细胞在呼吸代谢过程中所进行的一系列 氧化还原反应过程,所以又称为细胞氧化或细胞 呼吸。
7
Concept of Biological Oxidation
11
CO2的生成
方式:生物氧化过程中生成的CO2并不是代谢物上的碳 原子与吸入的氧直接化合的结果,而是有机酸脱羧作用生 成的。糖、脂、蛋白质等有机物转变成含羧基的中间化合 物,然后在酶催化下脱羧而生成CO2。
根据所脱羧基在有机酸分子中的位置,可将脱羧反应分 为α-脱羧和β-脱羧;又根据反应的同时是否伴有氧化反 应,分为单纯脱羧和氧化脱羧。
第六章 生物氧化—电子传递 和氧化磷酸化作用
(Biological oxidation —electron transport and oxidative phosphorylation)
一、电子传递和氧化呼吸链 二、氧化磷energy
One of the most complicated metabolic pathways encountered in biochemistry-----the mitochondrial electron transport system and its related ATP synthase. Electron transferring via a chain of membrane bound carriers, across membrane proton gradient, ATP synthesis (with O2 consumed)
Oxidation of materials in the biological body
Degradation of glucoses,fatty acids,proteins
Release of energy Formation of CO2 and H2O
Trap the energy released as ATP and Body heat
8
生物氧化与非生物氧化的比较
与非生物氧化相比: 相同点 • 化学本质相同,都是失电子反应,如脱氢、加 氧、传出电子。失电子者为还原剂,是电子供体, 得电子者为氧化剂,是电子受体。在生物体内, 生物氧化有三种方式:加氧氧化,电子转移和脱 氢氧化。 • 同种物质不论以何种方式氧化,所释放的能量 相同。
10
不同点:
• 生物氧化是酶促反应,反应条件(如温度、pH)温和 ;而体外燃烧则是剧烈的游离基反应,要求在高温、 高压以及干燥的条件下进行。
• 生物氧化分阶段逐步缓慢地氧化,能量也逐步释放; 而体外燃烧能量是爆发式释放出来的。
• 生物氧化释放的能量有相当多的转换成ATP中活跃的 化学能,用于各种生命活动;体外燃烧产生的能量则 转换为光和热,散失在环境中。
9
Electron transfer via red-ox reactions generates biological energy
Oxidative reaction
De-electron Dehydrate Add oxygen
Reductive reaction
Accept electron Add hydrate De-oxygen
类型:α-脱羧和β-脱羧(从脱羧的位置) 氧化脱羧和单纯脱羧 (脱羧方式)
3
4
Some historical facts about our understanding on oxidative phosphorylation
• 1930s: Pyruvate was known to be completely oxidized to CO2 via the citric acid cycle (with O2 consumed). • 1930s: NAD+ and FAD were found to be e- carriers between metabolites and the respiratory chain. • 1930s: Role of ATP and general importance of phosphorylation in bioenergetics were realized.
5
• 1950s: Isolated mitochondria were found to effect the obligatory coupling of the phosphorylation of ADP and the e- transfer from NADH to O2. • 1961, the chemiosmotic hypothesis was proposed for linking the e- transfer and ADP phosphorylation (based on the uncoupling phenomenon and the intactness requirement) • 1960s, ATP synthase was identified from mitochondria.