当前位置:文档之家› 特征函数的性质及应用

特征函数的性质及应用

特征函数的性质及其应用摘 要:本文讨论了特征函数概念,特征函数的若干性质并进一步探讨特征函数在 各个方面的应用以及它们的证明过程。

关键词:特征函数;随机变量Some properties of characteristic functionand its applicationClass3, 2008, Department of Mathematics XueEndeAbstract : This paper discusses the concept of characteristic function characteristicfunction, some properties and further explore the characteristic functionVarious aspects of the application as well as their process of proofKeywords : The characteristic function of random variables;1引言特征函数在概率统计领域中是研究极限定理的强有力的工具,虽然它的作用不像分布函数那样明显,但是它却有着很好的分析性质。

广大数学工作者对此也进行了深入的探讨,得到了特征函数的一些性质以及在各个方面中的应用等一系列成果。

它不是单一的学科,与其它学科也有着重要的联系,特别是在物理学上各种热力学关系都以特征函数为基础,所以它在热力学中占有很重要的地位。

鉴于此,我们有必要进一步讨论特征函数的相关性质。

本文将主要针对特征函数的性质和应用进行分开讨论。

2特征函数的定义及性质为了讨论方便,先给出特征函数的概念2.1基本概念 我们称(),()it t Ee t ξϕ=-∞<<+∞是ξ的特征函数.(其中令ξ是任一随机变量)上面介绍了特征函数的概念,接下来讨论一下特征函数的一些性质.2.2特征函数的性质 性质1 令1,ξ2ξ的特征函数分别为12(),(),t t ϕϕ且1ξ与2ξ相互独立,那么12ξξ+的特征函数为12()()()t t t ϕϕϕ=.证明 设1,ξ2ξ是两个相互独立的随机变量,则1,ξ2ξ的特征函数1212(),()it it t Ee t Ee ξξϕϕ==中的1it e ξ与2it e ξ也相互独立.由数学期望的性质可得121212()12()()()(),it it it it it t Ee E e e Ee Ee t t ξξξξξξϕϕϕ+==⋅=⋅=故性质1得证.性质2 令随机变量ξ存在有n 阶矩,那么ξ的特征函数()t ϕ可以微分n 次,且若,k n ≤则(0).k k k i E ϕξ=证明 ().k k itx k k itxkd e i x e x dt=≤根据假定(),k x dF x +∞-∞<∞⎰故下式中在积分号下对t 求导n 次,于是对0k n ≤≤,有()()()kk k itx k k it t i x e p x dx i E e ξϕξ+∞-∞==⎰令t=0,即(0)()k k k i E ϕξ=.性质3 若()t ϕ是特征函数,则(1)()t ϕ-,(2)2(),t ϕ(3)[]()()nt n N ϕ+∈也是特征函数.证明 (1)若()t ϕ是随机变量ξ的特征函数,那么()t ϕ-可以看作是随机变量(ξ-)的特征函数.(2)若1ξ与2ξ独立同分布,其特征函数为()t ϕ,那么2()()()t t t ϕϕϕ=-是随机变量12ξξ-的特征函数.(3)若12,,,m ξξξ 独立同分布,其特征函数为()t ϕ,那么[]()nt ϕ是随机变量12m ξξξ+++ 的特征函数.性质4(唯一性)随机变量ξ的分布函数()F x 仅由特征函数()t ϕ决定. 证明 设x 是任取的()F x 的连续点.令z 设在F 的连续点趋近-∞,则有1()lim lim()2itz itxA Az A e e F x t dt itϕπ---→-∞→∞-=⎰. 根据分布函数左连续,并且F 的连续点在直线上稠密, 即对每个(,)x ∈-∞+∞有F 的连续点,m x x <m x x <. 从而F 由其连续点上的值唯一确定.性质5 当且仅当()iat t e ϕ=时,函数()t ϕ与1()t ϕ都是一个特征函数. 证明 若()t ϕ与1()t ϕ都是特征函数,设随机变量1ξ与2ξ相互独立,且1ξ与2ξ的特征函数分别是()t ϕ和1()t ϕ.因为12ξξ+的特征函数为1()1()t t ϕϕ=,所以12(0)1P ξξ+==. 故有[]21121211()()(,)()()()()()F x P x P x x P x P x P x P x F x ξξξξξξξ=<=<<-=<<-=<<=.因此必存在常数a ,使得0()1x aF x x a≤⎧=⎨≥⎩所以ξ服从单点分布()1,P a ξ==即()iat t e ϕ=.反过来,若()iat t e ϕ=,则1()iat e t ϕ-=也是特征函数. 所以当且仅当()iat t e ϕ=时,()t ϕ与1()t ϕ都是特征函数. 性质6 设a b ηξ=+(,a b 是任意常数),记η在Y Z =时条件特征函数为()k t ϕ,则()()ibt k k t e at ϕϕ=.证明()()()()()it a b itb itb itb k k t E e Y k E e Y k e e at ξξϕϕ+=/==/==. 3 特征函数的应用 3.1在证明极限定理的应用定理 1 (辛钦大数定律)设1,2,ξξ 是一列独立分布的随机变量,且数学期望存在(1,2,)i E a i ξ== ,则对任意的0ε>,有11n pi i a n ξ=−−→∑. 证明 因为1,2,ξξ 具有一样的分布,所以它们也有一样的特征函数.我们把这个特征函数记为()t ϕ,又由于i E a ξ=存在,从而特征函数()t ϕ有展开式()(0)(0)t t ϕϕϕ'=++ο()再由独立性知11n i i n ξ=∑的特征函数为()1m mt t t ia n n n ϕ⎡⎤⎡⎤=++ο()⎢⎥⎢⎥⎣⎦⎣⎦.对任意t 有lim ()lim 1m miat n n t t t ia e n n n ϕ→∞→∞⎡⎤⎡⎤=++ο()=⎢⎥⎢⎥⎣⎦⎣⎦.已知iate 是退化分布的特征函数,对应的分布函数为()I x a -.根据连续性定理11ni i n ξ=∑的分布函数弱收敛于()F x ,因为a 是常数,则有11n pi i a n ξ=−−→∑.定理2 (林德贝格——勒维定理)若1,2,ξξ 是一列独立同分布的随机变量,且22,(0)1,2,k k E a D k ξξσσ==>=则有22lim )nt kxn nap x e dt ξ--∞→+∞-≤=∑.证明 设k a ξ-的特征函数()t ϕ1nknk naξ=-=∑nϕ⎡⎤⎢⎥⎣⎦. 又因为2()0,(),k k E a D a ξξσ-=-=所以2(0)0,(0)ϕϕσ'''==-.于是特征函数()t ϕ的展开式222221()(0)(0)(0)()1()22t t t t t t ϕϕϕϕσ'''=+++ο=-+ο.从而对任意固定的t有221().2nnt t nn ϕ⎡⎤⎡⎤=-+ο⎢⎥⎢⎥⎣⎦⎣⎦ 而22t e-是(0,1)N 分布的特征函数,从而定理得证.3.2在计算数字特征上的应用.例 求2(,)N μσ分布的数学期望与方差. 解 根据2(,)N μσ分布的函数222(),t i tt eσμϕ=再由性质2(0)kkikE ϕξ=知2222(0),(0)iE i i E ξϕμξϕμσ'''====--. 因此222,()E D E E ξμξξξσ==-=. 3.3在证明函数的随机变量和分布中的应用.利用归纳法:我们可以把性质1进行推广到n 个独立随机变量的场合,令12,,,nξξξ 为n 个相互独立的随机变量,它们所对应的特征函数为12(),(),,(),n t t t ϕϕϕ 则1n i i ξξ==∑的特征函数为1()().ni i t t ϕϕ==∑例 设(1,2,,)i i n ξ= 为n 个相互独立的随机变量,且它们服从2(,)i N μσ分布的正态随机变量,试求1nii ξξ==∑的分布.解 由i ξ得分布为2(,)i N μσ,所以它们对应的特征函数为22().2i i ti t t eμσϕ=我们根据特征函数的性质1()()ni i t t ϕϕ==∑可知ξ的特征函数12222111()()()22n i i i i t nn i ti i i i i tt t Eeet μμσϕϕσ=⎡⎤⎢⎥⎢⎥⎣⎦==∑===+∑∑. 而它却是211(,)n ni ii i N μσ==∑∑分布的特征函数.从而根据分布函数与特征函数的一一对应关系即可知ξ服从211(,)nni ii i N μσ==∑∑分布.例 设随机变量12,,,n X X X 相互独立且分别服从为(1)k k m λ≤≤的普哇松分布,求1.nk K Y X ==∑解 对于任何一个k ,k X 服从参数为λ的普哇松分布,从而我们知道它的特征函数为1()(1)1()()nit k k n e k K t t eλϕϕ=-=∑==∑,而()t ϕ是参数为1nkK λ=∑的普哇松分布的特征函数,从而可知Y 服从参数为1nkK λ=∑的普哇松分布.。

相关主题