当前位置:文档之家› 钢-混凝土组合梁.详解

钢-混凝土组合梁.详解


29
§ 3.3 组合梁试验结果分析
3.3.1 组合梁正截面受力性能
由试验结果知;从加荷到破坏,组合梁 正截面经历弹性、弹塑性和塑性三个受力阶 段,见图3.3.1
塑性 弹塑性 A 弹性
B
30
31
简支组合梁破坏形态
32
连续组合梁破坏形态
33
3.3.1
1、弹性阶段
组合梁正截面受力性能
在荷载作用初期,组合梁整体工作性能良好,荷载-变形曲 线基本上呈线性增长,当荷载达极限荷载的50%左右时,钢梁的 下翼缘开始屈服,而钢梁其它部分还有还处于弹性工作状态 2、弹塑性阶段 加荷至混凝土翼缘板板底开裂后,钢梁的应变速率加快,组 合梁的变形增长速度大于荷载的增长速度,荷载-变形曲线开始 偏离原来的直线。当钢梁下翼缘达到曲服后,组合梁的挠度变形
y0
Ay A
i i
i
(3.4.3)
Ai ——第个单元的截面面积,对混凝土单元 需将其换算成钢材单元进行计算 ; yi ——第个单元重心轴距截面顶边得距离。
当考虑混凝土得徐变影响时,应将公式3.4.2 代入公式3.4.3进行计算,即可求得考虑混凝土徐 变影响的组合截面的重心轴距组合截面顶边的距 c y 离,并用 0 表示。
22
3.1.4
组合梁的施工方法
2. 施工阶段组合梁下设临时支撑
施工阶段在组合梁下设置临时支撑,临时支撑的数量根据组合梁的跨度大小
来确定,当跨度L大于7m时,支撑不应少于3个,当跨度L小于7m时,可设置 1~2个支撑。支撑设置的精确数量应根据施工阶段的变形来确定。这时,组合梁 不必进行施工阶段的计算,按使用阶段进行计算,全部荷载均由组合梁承受。设 置临时支撑可以减少组合梁在使用阶段的挠度,但需要较多的连接件来抵抗钢梁 与混凝土板之间的相对滑移。
(1)荷载短期效应组合时
(2)荷期长期效应组合时
beq be / 2 E
beq be / E
(3.4.1)
(3.4.2)
式中 beq——混凝土翼板换算为钢材的等效宽度; be ——混凝土翼板的有效宽度; E ——钢材弹性模量E与混凝土模量Ec的比值 。
41
2、换算截面重心轴(中和轴)的位置
抗矩为按下式计算:
47
4、考虑混凝土徐变的截面抵抗矩
c A0 beq hc1 A
I
c 0
beq hc31 12
beq hc1
y
c 0
0.5hc1 I s As y y

2

c 2 0

c I W0tc c 0 y0 hc1
W0bc
W0cc
c I0 c H y0
19
3.1.2 组合梁工作的基本原理
组合梁
•本课程重点学习组合梁
20
3.1.3
组合梁截面分析方法
组合梁截面分析方法有 弹性理论 方法和考虑截面塑
性变形发展的塑性理论计算方法。 1、弹性理论计算方法 弹性理论计算方法就是材料力学方法。这种计算方 法适合组合梁构件的施工阶段计算。
2、塑性理论计算方法
施工阶段 有无 支撑 短期 使用阶段 长期
设 计 内 容
弹性 方法
压区 砼换 算为 钢

钢梁
抗弯 抗剪 折算应力 连接件 挠度 稳定 裂缝
6
塑性 方法
截面砼 和钢均 达设计 强度
§3.1 概 述
通过剪力连接件将混凝土板与钢梁连接成整体, 形成钢与混凝土组合梁。在这种组合梁中,混凝土与 钢梁共同受力,协调变形。这种组合梁能够充分的利
17
3.1.2 组合梁工作的基本原理
非组合梁
18
3.1.2 组合梁工作的基本原理
组合梁
若在钢梁的上翼缘设置足够的抗剪连接件并
深入混凝土板形成整体,则可阻止混凝土板与钢 梁之间产生的相对滑移,使二者的弯曲变形协调, 共同承担荷载作用,即形成组合梁。 在荷载作用下,组合梁截面仅有一个中和轴, 混凝土板主要承受压力,钢梁主要承受拉力。
c I0 c y0
48
3.4.2 施工阶段组合梁计算
在楼板的混凝土未达到强度设计值以前,全部荷载 由组合梁中的钢梁承受,所以,施工阶段只需对钢梁 进行计算,其计算内容为;钢梁的正应力计算、剪应 力计算、整体稳定计算和钢梁挠度计算。此时称为组 合梁的第一受力阶段。
在施工阶段,当钢梁受压翼缘的自由长度与其宽度
显著增大,组合梁的工作进入弹塑性阶段
34
3.3.1
3、塑性阶段
组合梁正截面受力性能
加荷至破坏荷载的
90%以上时,组合梁跨 中的挠度变形大幅度增
长,荷载-变形曲线基
本呈水平趋势发展,此 时组合梁的工作已进入 塑性工作阶段。
35
3.3.1 组合梁正截面受力性能
图3.3.3 组合梁截面实测应变图
36
3.3.2 组合梁交接面的滑移特征
对于箱形截面梁
b0 235 40 t fy
53
3、钢梁剪应力计算
在主平面内受弯的实腹式钢梁,其腹板的剪应力
应满足下列条件:
V1 S 0 1 fv Itw
4 、钢梁的整体稳定性 组合梁中的钢梁部件,当其受压翼缘的自由长度 与宽度比值超过表 3.4.1 中规定的限值时 , 应按下式 验算楼板混凝土未凝固前的钢梁整体稳定性: Mx f bW x
用钢材所具有的抗拉性能和混凝土所具有的抗压性能,
从而使这两种不同性能的材料得到合理的利用。
7
3.1.1 钢-混凝土组合梁的组成
钢与混凝土组合梁截面由钢梁、翼板 ( 或加 板托)和抗剪连接件等组成,见图3.1.1。
8
9
1、翼缘板
(1)现浇钢筋混凝土翼缘板,见图3.1.2
10
(2)预制钢筋混凝土翼缘板,见图3.1.3
2
2
I0 y 0 hc1
I0 W H y0
b 0
I0 W y0
c 0
46
4、考虑混凝土徐变的截面抵抗矩
组合梁在永久荷载的长期作用下 , 受压翼缘混凝土
发生徐变,将使混凝土翼缘的应力减小,钢梁的应力增大。 为了在计算中反映这一效应 , 可将混凝土翼缘板有效宽 度内的截面面积除以2换算成钢材截面面积。 此情况下 , 组合截面的中和轴一般位于钢梁的截面 内(见图 3.4.3 )。换算后的组合截面面积、惯性矩、 对钢梁上翼缘、下翼缘的抵抗矩以及对组合梁顶面的抵
42
3、荷载短期效应组合下截面弹性抵抗矩
(1)中和轴在板内(见图3.4.2)
43
3、荷载短期效应组合下截面弹性抵抗矩(中和轴在板内)
A0 beq hc1 Abeq he1 yo 0.5hc1 I s As y y0
2
25
3、混凝土板的有效宽度
26
4、板托尺寸 板托顶部的宽度与板托高度之比应不小于1.5, 且板托的高度不应大于混凝土板得厚度的1.5倍
27
5、钢梁
(1)截面尺寸 组合梁中的钢梁,其截面高度不应小于组 合梁截面高度(包括板托)的1 / 2.5 ,即 h 0.4H (2)截面形状和加劲肋
28
3.2.3 主、次梁的连接
塑性理论计算方法适用与计算承受静力荷载或间接 动力荷载作用下的组合梁截面计算。计算时考虑构件截 面上的应力重分布。
21
3.1.4
组合梁的施工方法
组合梁的施工方法主要有以下两种:
1. 施工阶段组合梁下不设临时支撑
对施工阶段不设临时支撑的组合梁,计算分析时应按两阶段考虑:
(1)在施工阶段,即混凝土板的强度达到75%以前,钢梁的自重、混凝土板的 自重和施工活荷载由钢梁承受,并按《钢结构设计规范》规定的方法计算; (2)在使用阶段,即当混凝土板的强度达到75%的设计强度后,用弹性理论计 算承载力时,使用荷载和第二阶段增加的恒载由组合截面承受。用塑性理论方 法计算时,则全部荷载由组合梁承受。
37
3.3.2 组合梁交接面的滑移特征
2、影响组合梁交接面上滑移的因素
( 1 )由图 3.3.4 可以看出,在荷载作用初期,荷
载-滑移曲线明显呈线性关系,当荷载达到极限荷
载的70%时,滑移增长速度明显大于荷载的增长速度 。 (2)连接件的刚度对滑移分布有着重要的影响。 (3)混凝土的强度对组合梁交接面上滑移有一定 的影响。
Mx f xWnx
(2)双向弯曲 钢梁在双向弯矩和的共同作用下,其截面正 应力应满足下列要求:
51
2、钢梁正应力计算
My Wx f xWnx yWny
式中 M x`M y ——绕X轴和Y轴的弯矩设计值,对工字 形截面, X轴为强轴 Y轴为弱轴;
Wnx`Wny ——对X轴和Y轴的净截面抵抗拒; x` y ——截面塑性发展系数,工字形截面分别
23
§ 3.2 构造要求 3.2.1 材料
1.混凝土 强度等级不低于C20。
2.钢筋
混凝土板中一般采用HPB235与HRB335。 3.钢材 宜采用Q235与Q345。
24
3.2.2
截面尺寸
1、组合梁的截面高度 简支梁组合梁的高跨比为1/18~1/12,一般取1/15. 2、混凝土楼板的厚度 当楼板采用压型钢板组合板时 , 压型钢板凸肋顶 至混凝土板顶混凝土板厚度不应小于50mm. 当楼板采用普通钢筋混凝土板时,混凝土板的厚度 不应小于100mm. 组合梁混凝土板厚,一般以10mm为模数,经常采 用的板厚为100mm、120mm、140mm、160mm 。 3、混凝土板的有效宽度 be b0 b1 b2
38
§ 3.4 组合梁按弹性理论分析
3.4.1 截面几何特征值
1、换算截面
组合梁在正弯矩作用下按弹性理论进行截面分析时,应根 据截面应变相同且总内力不变的原则,将受压混凝土板的有效 宽度折算成与钢材等效的换算截面宽度,见图3.4.1。
相关主题