浅淡对现代数学的理解摘要:数学作为一门基础学科,是各学科领域进行科学研究工作不可或缺的知识。
随着工程技术日新月异的发展,对数学的要求愈来愈高,现代数学的观点、方法已渗透到工程技术的各个领域,要求工程技术人员不仅具备经典的数学知识和处理问题的方法,还要求了解现代数学的内容和方法。
通过课程学习,大致了解现代数学基础的知识体系,发展历史。
本文在课程学习基础上总结了现代数学思想方法的发展过程、研究现状以及未来发展趋势。
关键词:现代数学;特点;趋势1 现代数学是的发展历史纵观数学的历史发展,可以清楚的划分为初等数学、高等数学和现代数学三个阶段。
从古代到十七世纪初为初等数学阶段;从十七世纪初到十九世纪末为高等数学阶段;从十九世纪末开始,数学进入了现代数学阶段。
按照传统的、经典的说法,数学是研究“显示世界的数量关系和空间形式”的科学[1,2],或者简单地说,是研究数和形的科学。
然而作为数学对象的数和形,在三个阶段里是很不相同的。
在初等数学阶段,“数”是常量,“形”是孤立的、简单的几何形体。
初等数学分别研究常量见的代数运算和几何形体内部以及相互间的对应关系,形成了代数和几何两大领域。
高等数学以笛卡尔(R. Descartes)建立解析几何(1637)为起点,17世纪89年代微积分的建立是这一阶段最显赫的成就和标志。
在高等数学阶段,数是变量,形是曲线和曲面,高等数学研究它们之间各种函数和变换关系。
这时数和形紧密的联系在起来,但大体上还是个成系统的。
由于发轫与微积分的方向数学的兴起和发展,数学形成为代数、几何和分析三大领域。
现代数学阶段以康托尔(G. Cantor)建立集合论(1874)为起点。
正如数学家陈省身所说:“康托尔的集合论,独创新意,高瞻远瞩,为数学立了基础。
”[3]29世纪以后,用公理化体系和结构观点来通观数学,成为现代数学的明显标志,现代数学阶段的研究对象是一般的集合、各种空间和流形。
它们都能用集合和映射的概念统一起来,已很难区分哪些是属于数的范畴,哪些属于形的范畴了。
二.现代数学思想现代数学作为数学发展的新阶段,它必然在数学的固有特点(抽象性、精确可靠性、广泛应用性等)方面有所发展,这些特点相互间又是彼此联系的。
1. 高度的抽象和统一抽象性是数学这门科学的一个最基本、最显著的特点。
而现代数学更加充分、更加积极主动的发挥着这一特点。
现代数学的研究对象、研究内容和研究方法,都呈现出高度的抽象和统一。
所谓抽象和统一,就是把不同对象中共同的、本质的东西抽象出来,作为高一层次的对象加以研究,从而把原来许多不同的对象统一起来,求得共同的本质的规律。
一个最简单的例子就是各种算术应用问题可以用代数统一起来,掌握算术的最好的方法就是学会代数。
抽象和统一是一个完整概念的两个方面。
为了统一必须抽象,有了抽象就能统一,并且还扩大了范围。
集合概念是对数学所研究的各种对象的抽象概括。
把一般的集合作为现代数学的研究对象,这就能把数学的个不同领域统一起来,并极大地扩大了数学的范围。
例如流形是三位空间中的曲线、曲面和区域的抽象概括,流形不仅把它们统一起来,并且推广到高维空间中。
在以前的数学发展中,抽象化的进度是比较缓慢的。
只是在它对原来层次的研究已充分详尽地展开,客观上实有必要时才进入更高层次的研究。
现代数学的发展状况则完全不同,抽象化的进入大大加快了。
正如数学家L. Loomis所说:“现代数学的特点之一,就是当一种新的数学对象刚刚定义和讨论不多时,就立即考查全体这样对象的集合。
”[4]向高一层次作抽象正是研究原来层次对象的一个重要方法。
现代数学是高度的抽象和统一,这“高度”二字的含义是指他不断地和积极主动地想更高层次做抽象,数学家们自觉地、运用自如地发挥着抽象化的特点和威力。
以代数学科的发展为例:算术的发展有好几千年,进入以解一次、二次方程为主的小代数发展也近千年,19世纪初发展以方程论(包括高次方程和线性方程组)为中心的大代数;19世纪以来约百年之久发展了研究矩阵、置换群、数域等具体的代数结构的高等代数;20世纪20年代开始发展用统一观点、从公理出发研究各种代数系统(如群、环、域、模等)的抽象代数(也称近似代数);20世纪40年代以后又出现了以一般代数系统为研究对象的泛代数。
这里从算术——小代数——大代数——高等代数——近世代数——泛代数每一个比一个层次更高、更抽象,抽象化的进度越来越快。
再如,从微积分建立以来,人们长期研究的都是一维、二维和三维欧氏空间的微积分,研究得很充分。
因为现实空间都是三维的,加上时间变量才有四维时空的概念。
后来多参数、多变量的问题需要研究更高维数,才有必要研究一般的n维欧氏空间,以后又由于物理问题的需要,在1900年前后提出了无限维空间,即Hilbert空间的研究;不久在1906年Frechet提出一般的距离空间,并在其中讨论极限、连续等;很快到了1914年Hausdoff又提出拓扑空间,并在其中讨论极限、连续等。
这里从低维欧氏空间——n维欧氏空间——Hilbert空间——距离空间——拓扑空间,也是一个比一个层次更高、更抽象,抽象化进度越来越快。
二高一层次的研究直接有助于低一层次研究的深入。
有了高度的抽象和统一,才能更深入地揭示本质的数学规律和得到更广泛的应用。
此外,人们为了能把一代代积累起来、并且迅速递增的数学知识,加以整理和流传下去,也必须努力把它们加以简化和统一。
中首先要求数学语言和符号的简化,用一些简单基本的词汇、符号,尽量包含更多的信息,刻画复杂的数学规律。
现在全世界研究基本形成了一套数学符号系统,它们简明、抽象、准确、有效,知识现代数学发展的必要条件之一。
现代数学的高度抽象和统一,更能显示数学的美。
以广义Stocks公式为例,写它只用九个字符:dV Vωω∂=⎰⎰,它却把微积分中的牛顿—莱布尼茨公式,格林公式,Stocks 公式和奥-高公式,这一系列基本公式都作为简单特例而统一起来了。
广义Stocks公式内容极为丰富,它适用于任何高维的空间和一般的流形,二它的形式又特别简单。
现代数学的简洁、统一、对称、和谐的美,在它的身上得到了充分的体现。
2. 注重公理化体系的建立和结构的分析希腊数学家欧几里德在其《几何原本》中首创的公理化方法为数学家和物理学家树立了如何建立科学理论体系的光辉典范。
所谓公理化方法,就是以尽可能少的原始概念和不加证明的公理作为基础,用逻辑推理来建立演绎的科学理论。
“几何原本”的公理化体系有不完善的地方,1899年Hilbert的“几何基础”出版。
Hilbert为几何建立了严密的公理化体系,并由此创导了现代公理化方法。
Hilbett 的现代公理化方法的重大贡献有两个,一个是原始概念本身应是不加定义的,Hilbert 明确指出欧几里得关于点、线、面的定义并不重要.“我们必定可以用桌子、椅子、啤酒瓶来代替点线面”[5],这样就使公理化体系达到了更高的抽象、扩大了它的应用范围。
另一个是 Hilbert 明确提出了公理系统的三个基本要求,即相容性,独立性和完备性。
20世纪以来数学家们以Hilbert 的几何公理化系统为楷模,努力为各个数学分支建立公理化体系。
公理化方法,不仅能系统地总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,并能促进新数学理论的建立和发展。
一个突出的例子就是在欧氏几何的公理系统中,只要换一条平行公理,就导致肺欧几何的建立。
非欧几何的发现是数学史上一个重要的里程碑[6],而欧氏几何与非欧几何的天壤之别,根源仅仅在于一条平行公理的不同,这就充分显示出公理化方法的威力。
形成于20世纪30年代的法国数学家团体——布尔巴基学派,以康托尔的几何论为出发点,系统地运用Hilbert 的公理化思想方法,提出用结构的观点统观数学。
他们用全局观点分析和比较了各个数学分支的公理体系结构,并按照结构的不同和内在联系对数学加以分类和重建,力图将整个数学大厦组建成一个渊源统一、脉络清晰、枝繁叶茂、井然有序的理论体系。
他们认为,“数学。
至少纯数学是研究抽象结构的理论。
”[7]这一观点对现代数学的发展有着深刻的影响。
早在16世纪,为解二次方程就引进了i =虚数。
直到19世纪,人们认识到复数i x y +可与平面上的点(,)x y 对应起来,两者间有相同的结构,从而复数的研究有了世纪意义而获得了飞速的发展和应用。
没有复数,就没有电学,就没有近代文明。
这个例子充分显示了吧一个陌生的对象纳入一个已知的结构之中,知识多么地重要,会产生多么巨大惊人的效益。
所谓“数学结构”是指遵从一些公理的几何和映射所组成的系统。
布尔巴基学派提出了数学中的三种基本结构,即序结构、代数结构金额拓扑结构。
以后数学家们认为测度结构也是一种基本结构。
对这些基本结构作各种交错复合,可派生出许许多多不同的数学结构。
例如,序结构中有偏序、全序等,代数结构中有群、域、线性空间等,拓扑结构中有距离空间、拓扑空间等。
而全序域、拓扑群、距离线性空间都是两个基本结构的复合,有序距离线性空间则是三种基本结构的复合。
“结构”也是数学家的工具。
[8]按照结构分析来划分和概括数学个分支的研究领域,不但使数学形成统一的整体,而且能清楚地看出各个不同分支的相互联系。
结构的观点有助于数学理论和解决数学问题;我们一旦认识到所研究的对象满足某种结构,就立刻可以运用那种结构领域内的概念和定理,从而可以节省四维劳动,布尔巴基学派在代数几何,代数拓扑、泛函分析、广义函数、李群等现代数学领域中做出了辉煌的贡献,这和他们掌握“结构”的思想,充分运用这个现代数学工具是分不开的。
数学是扎根于客观现实世界的,数学结构也必须是客观世界现实存在的结构的抽象概括。
上述四种基本结构的每一个都是实数系统的某个侧面的抽象。
序结构是从数的大小顺序抽象出来的,代数结构是从算术运算规律抽象出来,拓扑结构是距离、邻域概念的抽象,测度结构是长度、面积、体积概念的抽象,它使形式脱离空间,使关系脱离数量,把纯形式与纯关系都用“结构”一词概括,结构就成了数学研究的对象[9]。
数学世界是很庞大、多样的,由以上四种基本结构和由它们派生出来的各个数学结构,当然不能把现有一切数学分支都概括进去。
这有待于未概括进去的那些数学分支的发展成熟和建立公理化体系,还有待于从反映现实世界的数学模型中抽象出新的基本结构,布尔巴基学派自己就宣称“无论在数量方面,还是本质方面,结构都不是始终不变的…,数学的进一步发展将导致基本结构的数量的增长。
”[8]“数学的重点在发现那些有广泛应用的以及反映了世界的深层内涵的结构。
”[10]3. 注意不同数学学科的结合、不断开拓新领域现代数学的一个显著特征就是其不同分支间的相互渗透和联系[11]。
其结果有的使原来的学科面貌完全改观,有的相互结合发展成新的数学分支。