高等数学教案 §9 重积分第九章重积分教学目的:1. 理解二重积分、 三重积分的概念, 了解重积分的性质, 知道二重积分的中值定理。
2. 掌握二重积分的(直角坐标、极坐标)计算方法。
3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
教学重点:1、 二重积分的计算(直角坐标、极坐标) ;2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3、二、三重积分的几何应用及物理应用。
教学难点:1、 利用极坐标计算二重积分;2、 利用球坐标计算三重积分;3、 物理应用中的引力问题。
§9 1 二重积分的概念与性质一、二重积分的概念1 曲顶柱体的体积设有一立体它的底是 xOy 面上的闭区域 D 它的侧面是以 D 的边界曲线为准线而母线平行于 z 轴的柱面它的顶是曲面 z f(x y)这里 f(x y) 0 且在 D 上连续 这种立体叫做曲顶柱体 现在我们来讨论如何计算曲顶柱体的体积首先 用一组曲线网把 D 分成 n 个小区域12n分别以这些小闭区域的边界曲线为准线作母线平行于 z 轴的柱面这些柱面把原来的曲顶柱体分为 n 个细曲顶柱体在每个i中任取一点 (ii) 以 f (ii) 为高而底为i 的平顶柱体的体积为f ( i i ) i (i 1 2n )这个平顶柱体体积之和nVf ( i , i) i i1可以认为是整个曲顶柱体体积的近似值为求得曲顶柱体体积的精确值将分割加密只需取极限即nV lim f ( i , i )ii 1其中是个小区域的直径中的最大值2平面薄片的质量设有一平面薄片占有xOy面上的闭区域D它在点(x y)处的面密度为(x y)这里(x y) 0 且在 D 上连续现在要计算该薄片的质量M用一组曲线网把 D 分成 n 个小区域12n把各小块的质量近似地看作均匀薄片的质量(i i)i各小块质量的和作为平面薄片的质量的近似值nM( i , i )ii 1将分割加细取极限得到平面薄片的质量nM lim( i , i )ii 1其中是个小区域的直径中的最大值定义设f(x y)是有界闭区域 D 上的有界函数将闭区域 D 任意分成n 个小闭区域12n其中i 表示第i 个小区域也表示它的面积在每个i 上任取一点(i i )作和nf ( i , i )ii 1如果当各小闭区域的直径中的最大值趋于零时这和的极限总存在则称此极限为函数f(x y)在闭区域 D 上的二重积分记作 f (x, y)d即Dnf ( x, y)d limf ( i , i)iDi 1f(x y)被积函数 f(x y)d被积表达式 d 面积元素 x y 积分变量D 积分区域 积分和直角坐标系中的面积元素如果在直角坐标系中用平行于坐标轴的直线网来划分 D 那么除了包含边界点的一些小闭区域外 其余的小闭区域都是矩形闭区域 设矩形闭区域 i 的边长为 x i 和 y i 则ix y 因此在直角坐标系中 有时也把面积元素 d 记作 dxdy 而把二重积分记作iif (x, y)dxdyD其中 dxdy 叫做直角坐标系中的面积元素二重积分的存在性 当 f(x y)在闭区域 D 上连续时 积分和的极限是存在的 也就是 说函数 f(x y)在 D 上的二重积分必定存在 我们总假定函数 f(x y) 在闭区域 D 上连续所以f(x y)在 D 上的二重积分都是存在的二重积分的几何意义 如果 f(x y) 0 被积函数 f(x y)可解释为曲顶柱体的在点 (x y)处的竖坐标 所以二重积分的几何意义就是柱体的体积 如果 f( x y)是负的 柱体就在 xOy 面的下方 二重积分的绝对值仍等于柱体的体积但二重积分的值是负的二 二重积分的性质性质 1 设 c 1、 c 2 为常数 则[c 1 f (x, y) c 2 g(x, y)]dc 1 f ( x, y)dc 2 g( x, y)dDDD性质 2 如果闭区域 D 被有限条曲线分为有限个部分闭区域则在 D 上的二重积分等于在各部分闭区域上的二重积分的和例如 D 分为两个闭区域 D 1 与 D 2 则f (x, y)df (x, y)df (x, y)dDD 1D 2性质 31 dd( 为 D 的面积 )DD性质 4 如果在 D 上 f(x y) g(x y)则有不等式f (x, y)dg(x, y)dDD特殊地有| f ( x, y)d || f (x, y) |dD D性质 5 设 M、 m 分别是 f(x y)在闭区域 D 上的最大值和最小值为D的面积则有m f ( x, y)d MD性质 6(二重积分的中值定理) 设函数 f(x y)在闭区域 D 上连续为D的面积则在 D 上至少存在一点()使得f (x, y)d f ( , )D§9 2二重积分的计算法一、利用直角坐标计算二重积分X型区域D1(x)y2(x) a x bY型区域D 1(x) y 2(x) c y d混合型区域设 f(x y) 0 D {( x y)| 1(x) y 2(x) a x b}此时二重积分 f (x, y)d 在几何上表示以曲面z f(x y)为顶以区域 D 为底的曲顶D柱体的体积对于 x [a b] 曲顶柱体在x x0 的截面面积为以区间[1(x ) (x )]为底、以曲线0 0 2 0 z f(x0 y)为曲边的曲边梯形所以这截面的面积为A(x ) 2 (x0) f (x , y)dy1( x0 )根据平行截面面积为已知的立体体积的方法得曲顶柱体体积为V b b 2 (x)A( x)dx [1(x)a a即V f ( x, y)d b 2 ( x) [1(x) aD f ( x, y)dy]dx f ( x, y)dy]dx可记为高等数学教案§9 重积分f (x, y)db 2 (x)dxf (x, y)dyDa1(x)类似地 如果区域 D 为 Y 型区域D (x) y (x) c y d12则有f (x, y)dd dy2 (y) f (x, y)dxc 1 (y)D例 1 计算 xyd其中 D 是由直线 y 1、x 2 及 y x 所围成的闭区域D解 画出区域 D方法一可把 D 看成是 X型区域 1 x 2 1 y x于是xyd2 x2y 2x1 231 x 4 x 22 9[xydy]dx1 [ x2 ]1 dx2 1 (x x)dx2 [42 ]1 8D1 1xyd2dx x2xydy注 积分还可以写成1 xydy1 xdxD11解法 2 也可把 D 看成是 Y型区域 1 y 2 y x 2 于是222x 2 22y 3 2 y 42 9xyd[xydx]dy[ y(2y)dy[ y2 ] y dy2 8 ]18D1 y11例 2 计算y 1 x 2 y 2d其中 D 是由直线 y 1、 x 1 及 y x 所围成的闭区域D解 画出区域 D 可把 D 看成是 X 型区域 1 x 1 x y 1 于是y 1 x 22d1 1x 2 2 dy1 12 2 )3 11 132ydx y 1y3[(1x y ] x dx3 (| x| 1)dxD1 x112 1 (x3 1)dx 13 02也可 D 看成是 Y 型区域: 1 y 1 1 x<y 于是y 1 x2y 2d 1y1 x2y 2dx1 ydy 1D例 3 计算xyd其中 D 是由直线 yx 2 及抛物线 y2x 所围成的闭区域D解 积分区域可以表示为 D D 1+D 2其中 D 1 : 0 x 1,x y xD 2 : 1 x 4, 2 yx 于是xyd1 xxydy 4 x xydydxx dx x 2D1积分区域也可以表示为 D 1 y 2 y 2x y 2 于是xyd2 dyy 22 2 2dy 1 22)2 y5]dyy 2 xydx [ x y] y y 2 [ y( yD1122 11 [ y 4 4 y 32 y 2 y 6 25 52 43 6 ] 1 8讨论积分次序的选择例 4求两个底圆半径都等于的直交圆柱面所围成的立体的体积解 设这两个圆柱面的方程分别为x 2 y 2 2 及 x 2 z 22利用立体关于坐标平面的对称性 只要算出它在第一卦限部分的体积V 1 然后再乘以 8 就行了第一卦限部分是以 D {( x y)| 0 yR2x 2, 0 x} 为底 以 zR2 x 2顶的曲顶柱体于是V 822 dRR 2 x 2R 22dyR2 2y]0R 2 x 2R x8 dxx 8 [ R xdxDR8 ( R 2 x 2)dx 16 R 33二 利用极坐标计算二重积分有些二重积分积分区域 D 的边界曲线用极坐标方程来表示比较方便且被积函数用极坐标变量、 表达比较简单 这时我们就可以考虑利用极坐标来计算二重积分f (x, y)dDn按二重积分的定义f (x, y)dlimf ( i , i ) iDi 1下面我们来研究这个和的极限在极坐标系中的形式以从极点 O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域 D 分为 n 个小闭区域 小闭区域的面积为1 ( i i )2 12 1(2 ii )ii 2i 2i i 2 i i (ii)iiii2i其中i 表示相邻两圆弧的半径的平均值在i 内取点 (i , i )设其直角坐标为 ( ii )则有ii cos ii i sininn于是limf ( i , i )ilimf ( i cos i , i sin i ) iiii 1i 1即f x y df ( cos , sin ) d d( , )DD若积分区域 D 可表示为1( )( )2则 f ( cos , sin ) d d2()df ( cos , sin ) dD1( )讨论 如何确定积分限 ?f (cos , sin )d dd( )cos , sin ) df ( Df (cos , sin )d d2 ( )cos , sin ) ddf ( D例 5计算e x 2y 2 dxdy 其中 D 是由中心在原点、半径为 a 的圆周所围成的闭区D域解在极坐标系中闭区域D可表示为0 a 0 2e x2 y 22 2 a221e 2 ]0a d于是dxdy e d d [0 e d ]d[D D 021 (1 e a2 2 d (1 e a22 ) )注此处积分e x 2 y2 dxdy 也常写成e x2 y2 dxdyD x2 y2 a 2利用e x2 y2 dxdy (1 e a2 ) 计算广义积分e x 2 dxx2 y2 a 2设D1{( x y)|x2y2 D2{( x y)|x2y2S {( x y)|0 x R2R x 0 y 0} 2R2 x 0 y 0}显然 D1 S D2由于e x2y2 0 从则在这些闭区域上的二重积分之间有不等式e x2 y2 dxdy e x 2 y2 dxdy e x 2 y2 dxdyD1 S D2因为e x2 y2 dxdy R e x2 dx R e y 2 dy ( R e x2 dx)2S0 0 0又应用上面已得的结果有e x2 y2 dxdy (1 e R2 ) e x2 y 2 dxdy (1 e 2R 2 )D1 4 D24(1 e R2 R e x2 dx)2 (1 e 2R2 )于是上面的不等式可写成) (4 0 4令 R 上式两端趋于同一极限 4 从而0 e x2 dx 2例 6 求球体 x2 y2 z2 4a2被圆柱面 x2 y2 2ax 所截得的(含在圆柱面内的部分)立体的体积解由对称性立体体积为第一卦限部分的四倍V44a 2 x 2 y 2 dxdyD其中 D 为半圆周 y2ax x 2及 x 轴所围成的闭区域在极坐标系中 D 可表示为2a cos2于是V 4 4a22 d d 42d 2a cos 22 d4aD0 032 a 2 2 (1 sin 3 )d 32 a 2 ( 2 2)3 033§9 3 三重积分一、三重积分的概念定义 设 f(x y z)是空间有界闭区域上的有界函数 将 任意分成 n 个小闭区域v v 2v1n其中 v i 表示第 i 个小闭区域也表示它的体积在每个 v i 上任取一点 (iii )作乘积 f(n iii )v i ( i 1 2n)并作和f ( i , i , i ) v i 如果当各小闭区域的直径中的最大值i 1趋于零时 这和的极限总存在则称此极限为函数f(x y z)在闭区域上的三重积分记作f (x, y, z)dv即nf (x, y, z)dv limf ( i , i , i ) v i0 i 1三重积分中的有关术语 ——积分号 f( x y z)——被积函数f(x y z)dv ——被积表达式 dv 体积元素 x y z ——积分变量 ——积分区域在直角坐标系中 如果用平行于坐标面的平面来划分 则 v ixi y iz因此也把i体积元素记为 dv dxdydz三重积分记作f (x, y, z)dv f (x, y, z)dxdydzn当函数 f (x y z)在闭区域 上连续时 极限 limf ( i , i , i ) v i 是存在的i 1因此 f(x y z)在 上的三重积分是存在的 以后也总假定 f(x y z)在闭区域 上是连续的三重积分的性质 与二重积分类似比如[c 1 f (x, y, z) c 2g( x, y, z)]dv c 1 f (x, y, z)dv c 2g(x, y,z)dvf ( x, y, z)dvf (x, y, z)dvf (x, y, z)dv1212dv V 其中 V 为区域 的体积二、三重积分的计算1 利用直角坐标计算三重积分三重积分的计算 三重积分也可化为三次积分来计算设空间闭区域可表为z 1(x y) z z 2(x y) y 1 (x) y y 2 (x) a x b则f (x, y, z)dvz 2 (x,y)[f (x, y, z)dz]dz 1 (x, y)Dbdx y 2 (x) z 2 (x, y)[ f ( x, y,z)dz]dya y 1( x) z 1(x,y)b dxy 2 (x) z 2 (x, y)f (x, y, z)dza dyz 1( x, y)y 1( x) 即f (x, y, z)dvb y 2( x)dyz 2 (x,y)f (x, y, z)dzdxy 1(x) z 1(x, y)a其中 D : y 1(x) y y 2(x) a x b 它是闭区域在 xOy 面上的投影区域提示设空间闭区域 可表为z (x y) z z (x y) y (x) y y (x) a x b1212计算f (x, y, z)dv基本思想对于平面区域 D y 1(x) y y 2(x) a x b 内任意一点 (x y) 将 f(x y z)只看作 z 的函数在区间 [z 12y)]上对 z 积分 得到一个二元函数F(x y)(x y)z (xF (x, y) z 2(x,y)f (x, y, z)dzz 1 (x, y)然后计算 F(x y)在闭区域 D 上的二重积分 这就完成了 f(x y z) 在空间闭区域 上的三重积分F (x, y)dz 2 (x, y) b y 2 (x)z 2( x, y)[f (x, y, z)dz]d dx[f ( x, y, z)dz]dyDDz 1(x, y)ay 1(x) z 1(x,y)z 2(x, y)f (x, y, z)dz]d则f ( x, y, z)dv [z 1 (x, y)Db ab ay 2 (x)z 2 (x, y)dx [f ( x, y,z)dz]dy y 1( x) z 1(x,y) y 2 (x) dyz 2 (x, y)dxf (x, y, z)dzy 1( x) z 1( x, y)即f ( x, y, z)dvb y 2 (x) z 2 (x, y) f (x, y, z)dzdx dyz 1 (x, y)ay 1(x)其中 D : y 1(x) y y 2(x)a xb 它是闭区域在 xOy 面上的投影区域例 1 计算三重积分xdxdydz 其中 为三个坐标面及平面x 2y z 1 所围成的闭区域解 作图区域 可表示为 :0 z 1 x 2y0 y 1(1 x) 0 x 121 1 x1 x2 yxdxdydz2 dy xdz 于是dx 00 011 xxdx 2 (1 x 2y)dy1 1 23 1(x2xx )dx484 0讨论 其它类型区域呢 ?有时 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分 设空间闭区域{( x y z)|(x y) D z c 1 z c 2 } 其中 D z 是竖坐标为 z 的平面截空间闭区域所得到的一个平面闭区域则有f (x, y, z)dvc 2f (x, y, z)dxdydzc 1D z例 2 计算三重积分z 2dxdydz 其中是由椭球面x 2y 2 z 2 1 所围成的空间闭a 2b 2c 2区域解 空间区域 可表为 :x 2 y2 1z2c z c2 22abcz 2dxdydzcdxdycz24 于是z 2dzab c (123cc 2 )z dz15 abcD z练习1 将三重积分 If (x, y,z)dxdydz 化为三次积分其中(1) 是由曲面 z 1 x 2 y 2 z 0 所围成的闭区域(2) 是双曲抛物面 xy z 及平面 x y 1 0 z 0 所围成的闭区域(3) 其中 是由曲面 z x 2 2y 2 及 z 2 x 2所围成的闭区域2 将三重积分 I f (x, y, z)dxdydz 化为先进行二重积分再进行定积分的形式其中 由曲面 z 1 x 2 y 2 z 0 所围成的闭区域2 利用柱面坐标计算三重积分设 M(x y z)为空间内一点 并设点 M 在 xOy 面上的投影 P 的极坐标为 P() 则这样的三个数 、、 z 就叫做点 M 的柱面坐标 这里规定 、 、 z 的变化范围为0 < 02 <z< 坐标面z z 的意义点 M 的直角坐标与柱面坐标的关系x cos x cos y sin z zy sin z z柱面坐标系中的体积元素dv d d dz简单来说 dxdyd d dxdydz dxdy dzd d dz柱面坐标系中的三重积分f ( x, y, z)dxdydzf ( cos , sin , z) d d dz例 3 利用柱面坐标计算三重积分zdxdydz 其中 是由曲面 z x 2 y 2 与平面 z 4 所围成的闭区域解 闭区域 可表示为2z 4 02 0 2于是zdxdydzz d d dz22 41dd2zdz 021 2[8 21 6]2 642 6 0 33 利用球面坐标计算三重积分2 2 4)dd(16设 M(x y z)为空间内一点则点 M 也可用这样三个有次序的数 r 、 、来确定其中r 为原点 O 与点 M 间的距离为 OM 与 z 轴正向所夹的角为从正 z 轴来看自 x 轴按逆时针方向转到有向线段OP 的角 这里 P 为点 M 在 xOy 面上的投影 这样的三个数 r 、 、叫做点 M 的球面坐标这里 r 、 、的变化范围为0 r <0 < 02坐标面 r r 00 的意义点 M 的直角坐标与球面坐标的关系x r sin cosy rsin sin z rcosx r sin cos y r sin sin z r cos球面坐标系中的体积元素dv r 2sin drd d球面坐标系中的三重积分f (x, y, z)dvf (r sincos ,r sin sin ,r cos )r 2 sin drd d例 4 求半径为 a 的球面与半顶角为的内接锥面所围成的立体的体积解 该立体所占区域可表示为0 r 2acos 0 0 2于是所求立体的体积为Vdxdydzr 2sin drd d2 dd2acos 2sin dr0 r2sin d2a cos 2drr16 a3cos3sin d4 a3(1 cos 4a)33提示 球面的方程为 x 2 y 2 (z a)2a 2 即 x 2 y 2 z 2 2az 在球面坐标下此球面的方程为 r 2 2arcos 即 r2acos§9 4 重积分的应用元素法的推广有许多求总量的问题可以用定积分的元素法来处理这种元素法也可推广到二重积分的应用中如果所要计算的某个量U 对于闭区域 D 具有可加性 (就是说 当闭区域 D 分成许多小闭区域时所求量 U 相应地分成许多部分量 且 U 等于部分量之和 ) 并且在闭区域D 内任取一个直径很小的闭区域 d 时 相应的部分量可近似地表示为 f(x y)d的形式 其中 (x y)在 d 内 则称 f(x y)d为所求量 U 的元素记为 dU 以它为被积表达式在闭区域 D 上积分Uf ( x, y)dD这就是所求量的积分表达式一、曲面的面积设曲面 S 由方程 z f(x y)给出 D 为曲面 S 在 xOy 面上的投影区域 函数 f(x y)在 D 上具有连续偏导数 f x (x y)和 f y (x y) 现求曲面的面积 A在区域 D 内任取一点 P( x y) 并在区域 D 内取一包含点 P( x y) 的小闭区域 d其面积 也记为 d在曲面 S 上点 M(x y f( x y)) 处做曲面 S 的切平面 T 再做以小区域 d的边界曲线为准线、母线平行于 z 轴的柱面 将含于柱面内的小块切平面的面积作为含于柱面内的 小块曲面面积的近似值记为 dA 又设切平面 T 的法向量与 z 轴所成的角为则dAd 1 f x 2( x, y) f y 2( x, y) dcos这就是曲面 S 的面积元素于是曲面 S 的面积为A1 f x 2(x, y) f y 2( x, y)dD或A1 ( z )2 ( z )2dxdyDx y设 dA 为曲面 S 上点 M 处的面积元素 dA 在 xOy 面上的投影为小闭区域 d M 在 xOy面上的投影为点 P(x y) 因为曲面上点 M 处的法向量为 n ( f x y所以f 1)dA |n |d1 f x2 (x, y) f y 2(x, y)d提示 dA 与 xOy 面的夹角为 (n ^ k) dAcos(n ^ k) d n k |n|cos(n ^ k)1 cos(n ^ k) |n|1讨论 若曲面方程为 x g(y z)或 yh(z x) 则曲面的面积如何求?A1 ( x)2(x) 2 dydz Dyz yz或A1 ( y )2( y )2dzdx Dzxzx其中 D yz 是曲面在 yOz 面上的投影区域D zx 是曲面在 zOx 面上的投影区域例 1 求半径为 R 的球的表面积解 上半球面方程为 zR 2 x 2 y 2 x 2 y 2 R 2因为 z 对 x 和对 y 的偏导数在 D x 2 y 2 R 2上无界 所以上半球面面积不能直接求出因此先求在区域 D 1 x 2 y 2 a 2 (a R)上的部分球面面积然后取极限Rdxdy 2ardrRdx 2 y 2 a2R 2 x 2y 20 0R 2 r22 R(RR 2 a 2 )于是上半球面面积为 lim 2 R( RR2a 2 ) 2 R2a R整个球面面积为 A 2A 1 4 R 2提示zR2x y2zy y21 ( z )2( z) 2R xx2y R 2x2xyR 2x 2y2解 球面的面积 A 为上半球面面积的两倍上半球面的方程为zR 2 x 2 y 2 而zxzyxR 2 x2y 2yR 2 x 2 y 2所以A 21 ( z )2( z )2x 2 y 2 R 2xy2Rdxdy 2Rd2RdR 2 x 2 y 2 x 2 y 2 R 2R 22 22R24 R R4 R例 2 设有一颗地球同步轨道通讯卫星 距地面的高度为 h 36000km 运行的角速度与地球自转的角速度相同试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R 6400km)解 取地心为坐标原点地心到通讯卫星中心的连线为z 轴 建立坐标系通讯卫星覆盖的曲面是上半球面被半顶角为的圆锥面所截得的部分的方程为zR 2 x 2 y 2 x 2 y 2 R 2sin 2于是通讯卫星的覆盖面积为A1 ( z )2 ( z )2dxdyRdxdy DxyxyD xy R 2x2 y2其中 D xy {( x y)| x 2y 2 R 2sin 2 } 是曲面 在 xOy 面上的投影区域 利用极坐标得2d Rsin R dRsind 2 R 2(1 cos )A2 RR 22R 22由于 cosR代入上式得R hA 2 R 2(1R ) 2 R 2 h由此得这颗通讯卫星的覆盖面积与地球表面积之比为A h 36 10642.5%4 R2 2(R h) 2(36 6.4) 106由以上结果可知卫星覆盖了全球三分之一以上的面积故使用三颗相隔 2 角度的3通讯卫星就可以覆盖几乎地球全部表面二、质心设有一平面薄片占有 xOy 面上的闭区域 D 在点 P(x y)处的面密度为(x y) 假定(x y)在 D 上连续现在要求该薄片的质心坐标在闭区域 D 上任取一点 P(x y) 及包含点 P(x y)的一直径很小的闭区域 d (其面积也记为 d ) 则平面薄片对 x 轴和对 y 轴的力矩 (仅考虑大小 )元素分别为dM x y (x y)d dM y x (x y)d平面薄片对x 轴和对 y 轴的力矩分别为M x y (x, y)d M y x (x, y)dD D设平面薄片的质心坐标为(x, y) 平面薄片的质量为 M 则有x M M y y M M x于是M yx ( x, y)dM xy ( x, y)d D Dx(x, y)d y( x, y)dM MD D在闭区域 D 上任取包含点P(x y)小的闭区域 d (其面积也记为 d ) 则平面薄片对 x 轴和对 y 轴的力矩元素分别为dM x y (x y)d dM y x (x y)d平面薄片对x 轴和对 y 轴的力矩分别为M x y (x, y)d M y x (x, y)dD D设平面薄片的质心坐标为(x, y) 平面薄片的质量为M 则有x M M y y M M x于是M yx ( x, y)dM xy ( x, y)dx DyDM(x, y)dM( x, y)dDD提示 将 P(x y)点处的面积元素 d 看成是包含点 P 的直径得小的闭区域 D 上任取一点 P(x y)及包含的一直径很小的闭区域d (其面积也记为d ) 则平面薄片对 x 轴和对 y轴的力矩 (仅考虑大小 )元素分别为讨论 如果平面薄片是均匀的 即面密度是常数 则平面薄片的质心 ( 称为形心 )如何求?求平面图形的形心公式为xdydxDy DddDD例 3 求位于两圆 2sin 和 4sin 之间的均匀薄片的质心解 因为闭区域 D 对称于 y 轴 所以质心 C(x, y) 必位于 y 轴上于是 xyd2sin d dsin 4sin 2d7因为dD D2 sind2212 3Dyd 7 7 所求形心是 C(0, 7) 所以 yD d333D类似地 占有空间闭区域 、在点 (x y z)处的密度为(x y z)(假宽 (x y z)在 上连续 )的物体的质心坐标是x1 x (x, y, z)dvy 1 y (x, y,z)dvz1 z (x, y, z)dvMMM其中 M (x, y, z)dv例 4 求均匀半球体的质心解 取半球体的对称轴为 z 轴 原点取在球心上 又设球半径为 a 则半球体所占空间闭区可表示为{( x y z)| x 2 y 2 z 2 a 2 z 0}显然 质心在 z 轴上故 x y 0z dvzdvz3advdv 8故质心为 (0, 0,3a)8提示0 r a2 02dv2 d2 da 2sin dr2sin2 a 22 a 30 rddr dr30 0zdv2 2 d a r 2 sin dr1 2 sin 2 d 2 a 31 2 a 4 0dr cos2 0 drdr2 4 0三、转动惯量设有一平面薄片占有 xOy 面上的闭区域 D 在点 P(x y)处的面密度为(x y) 假定 (xy)在 D 上连续现在要求该薄片对于x 轴的转动惯量和 y 轴的转动惯量在闭区域 D 上任取一点 P(x y) 及包含点 P(x y)的一直径很小的闭区域 d (其面积也记为 d ) 则平面薄片对于 x 轴的转动惯量和 y 轴的转动惯量的元素分别为dI x y 2 (x y)ddI y x 2 (x y)d整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为I xy 2 (x, y)dI yx 2 (x, y)dDD例 5 求半径为 a 的均匀半圆薄片 (面密度为常量) 对于其直径边的转动惯量解 取坐标系如图则薄片所占闭区域 D 可表示为D {( x y)| x 2 y 2 a 2 y 0}而所求转动惯量即半圆薄片对于x 轴的转动惯量 I xI xy 2 d2sin2d dD Dsin 2 a 3d4sin 2 d 0da 04 01 a 41 Ma 242 4其中 M1 a2 为半圆薄片的质量2类似地占有空间有界闭区域、在点 (x y z)处的密度为 (x y z)的物体对于 x 、y 、 z轴的转动惯量为I x ( y 2 z 2) (x, y, z)dvI y ( z 2x 2) ( x, y, z)dvI z( x 2 y 2) (x, y, z)dv例 6 求密度为的均匀球体对于过球心的一条轴l 的转动惯量解 取球心为坐标原点 z 轴与轴 l 重合又设球的半径为a 则球体所占空间闭区域{( x y z)| x 2 y 2 z 2 a 2}所求转动惯量即球体对于z 轴的转动惯量 I zI z( x 2 y 2) dv(r 2sin 2cos2r 2 sin 2 sin 2 )r 2sin drd dr 4 sin32 dsin3da 4dr8 a 5 2 a 2M drd d r155其中 M 4 a 3为球体的质量3提示x 2 y 2 r 2sin 2 cos 2 r 2sin 2 sin 2r 2sin 2四、引力我们讨论空间一物体对于物体外一点P 0(x 0 y 0 z 0)处的单位质量的质点的引力问题设物体占有空间有界闭区域它在点 (x y z)处的密度为 (x y z) 并假定 (x y z)在上连续在物体内任取一点(x y z) 及包含该点的一直径很小的闭区域dv(其体积也记为dv)把这一小块物体的质量 dv 近似地看作集中在点 (x y z)处这一小块物体对位于 P0 (x0 y0 z0) 处的单位质量的质点的引力近似地为dF (dF x,dF y,dF z)(G ( x, y, z)( x x)dv,G(x, y, z)( y y)dv,G(x, y,z)( z z)dv)r 3 r 3 r 3其中 dF x、 dF y、 dF z 为引力元素 dF 在三个坐标轴上的分量r ( x x )2 ( y y )2 (z z )2G为引力常数将 dF x、dF y、dF z在上分别积分即可0 0 0得F x、F y、F z从而得 F (F x、F y、 F z)例 7 设半径为 R 的匀质球占有空间闭区域{( x y z)|x2 y2 z2 R2) 求它对于位于点M 0(0 0 a) (a>R)处的单位质量的质点的引力解设球的密度为0 由球体的对称性及质量分布的均匀性知F x=F y=0, 所求引力沿 z 轴的分量为F zG 0 z adv[ x2 y2 (z a)2 ]3 /2G 0 R ( z a)dzdxdy2 y 2 2 3/ 2R x2 [ x (z a) ]G 0 R ( z a)dz 2 d R2 z2 dR 0 0 [ 2( z a)2]3 /22 GR(z a)( 1 1 )dz 0 R 2a z 2az a2R2 G [ 2R 1 R (z a)d 2 2az a 2 ]R0 a R2G 0( 2R 2R 2R3 )G 4 R33a21 GM4 R3 3 0 a2 a2其中 M 0 为球的质量3上述结果表明匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力。