当前位置:文档之家› 金属塑性成型原理

金属塑性成型原理

第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2、提高金属塑性的主要途径有哪些?答1) 提高材料成分和组织的均匀性;(2) 合理选择变形温度和应变速率(3) 选择三向压缩性较强的变形方式;(4) 减小变形的不均匀性。

3:试述塑性成型的一般分类。

1按成形特点分;块料和板料成形。

其中块料成形分为一次加工和2次加工。

一次加工包括轧制、挤压、拉拔等加工方法。

二次加工包括自由锻、模锻等加工方法。

2按成形时工件的温度分为热成形,冷成形,温成形。

第二章1:为什么温度越高晶粒越细小和应变速率越低,扩散所引起的作用力越大?1,温度越高,原子的动能和扩散能力越大,晶粒越细小,则意味着有越多的晶界和原子扩散的路程越短,应变速率越低,表明有更充分的时间进行扩散,温度越高晶粒越细小和应变速率越低,扩散所引起的作用力越大2:在冷态下塑性变形的主要形式是什么?为什么?1在冷态条件下,多晶体的塑性变形是晶内变形,而晶内变形的主要方式是滑移。

2这是因为晶界存在各种缺陷,能量较高,在外力作用下不易变形,在冷态下条件下,晶界强度高于晶内,其变形比晶内困难,还由于晶粒在生成过程中,各晶粒相互接触,形成犬牙交错状态,造成对晶界滑移机械的阻碍作用,如果晶界变形,容易引起晶界结构的破坏,和裂纹产生,因此晶间变形只能很小。

3:冷塑性变形对金属组织的影响?1,晶粒形状的变化,金属经冷变形加工后,晶粒形状变化趋势与金属宏观变形一致,2,晶粒内部产生亚结构,3晶粒位向改变,产生变形织构。

4:热塑性变形对金属组织和性能的影响?1,改善晶粒组织,2,锻合内部缺陷,3,破碎并改善碳化物和非金属夹杂物在钢中的分布,4,形成纤维组织,5,改善偏析。

5:多晶体金属塑性变形的特点是什么?1各晶粒变形的不同时性,2,各晶粒变形具有相互协调性。

3晶粒与晶粒之间,晶粒内部与晶界附近区域之间的变形具有不均匀性6.试分析晶粒大小对金属塑性和变形抗力的影响。

①晶粒越细,变形抗力越大。

晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。

晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。

n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。

②晶粒越细小,金属的塑性就越好。

a.一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上;b.从每个晶粒的应力分布来看,细晶粒是晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。

这种不均匀性减小了,内应力的分布较均匀,因而金属断裂前能承受的塑性变形量就更大。

7.什么叫加工硬化?产生加工硬化的原因是什么?加工硬化对塑性加工生产有何利弊?加工硬化----随着金属变形程度的增加,其强度、硬度增加,而塑性、韧性降低的现象。

加工硬化的成因与位错的交互作用有关。

随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动。

这样,要是金属继续变形,就需要不断增加外力,才能克服位错间强大的交互作用力。

有利的一面:可作为一种强化金属的手段,一些不能用热处理方法强化的金属材料,可应用加工硬化的方法来强化,以提高金属的承载能力。

不利的一面:①由于加工硬化后,金属的屈服强度提高,要求进行塑性加工的设备能力增加;②由于塑性的下降,使得金属继续塑性变形困难,所以不得不增加中间退火工艺,从而降低了生产率,提高了生产成本。

8:简述静态回复过程中金属组织的变化?点缺陷减小,位错密度有所下降,但位错分布形态经过重新调整和组合而处于低能态,位错会变薄,网络更清晰,亚晶增大,但晶粒形状没有变化。

9:再结晶过程中金属塑性的变化?答:再结晶是一个显微组织彻底重组的过程,因而性能也发生了根本性的变化,表现为金属的强度、硬度明显下降,塑韧性显著提高,加工硬化和内应力完全消除,物理性能也得到恢复,金属大体上恢复到冷变形前的状态。

10:什么是动态回复?为什么说动态回复是热塑性变形的主要软化机制?1,动态回复是指在热塑性变形过程中发生的回复,2,动态回复,主要是通过位错的攀移,交滑移等,来实现的,对于铝镁合金、铁素体钢等,由于它们层错能高,变形时扩展位错宽度窄,集束容易,位错的攀移和交滑移容易进行,位错容易在滑移面间转动,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平。

因此这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于再结晶温度,也只会发生动态回复,而不发生动态再结晶。

11:什么是动态再结晶?影响其的主要因素有那些?1,动态再结晶是指在热塑性变形过程中发生的再结晶,2,影响动态再结晶的主要因素有(1)金属的层错能的高低,(2)晶界迁移的难易程度,(3)变形温度,(4)变形速率(5)变形程度。

12.钢锭经过热加工变形后其组织和性能发生了什么变化?①改善晶粒组织②锻合内部缺陷③破碎并改善碳化物和非金属夹杂物在钢中的分布④形成纤维组织⑤改善偏析13:冷变形金属和热变形金属的纤维组织有何不同?1,在晶粒组织变化方面:冷变形后,晶粒形状变化趋势与金属宏观变形一致,热变形后,粗大的树枝晶,经过塑性变形及再结晶变化成等轴细晶粒组织,2,冷变形时金属组织产生变形织构,热变形时,随着变形程度的增大,钢锭内部的树枝晶逐渐沿着主变形方向伸长,进而形成纤维组织,3,热变形形成的纤维组织,使金属的力学性能呈现各向异性,塑性增强,冷变形产生的变形织构分为丝织构和板织构,丝织构使材料使材料具有好的拉拔性能,板织构使材料有良好的压缩性能。

14.什么是细晶超塑性?什么是相变超塑性?①细晶超塑性它是在一定的恒温下,在应变速率和晶粒度都满足要求的条件下所呈现的超塑性。

具体地说,材料的晶粒必须超细化和等轴化,并在在成形期间保持稳定。

②相变超塑性要求具有相变或同素异构转变。

在一定的外力作用下,使金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,就可以获得很大的伸长率。

相变超塑性的主要控制因素是温度幅度和温度循环率。

15.什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义?塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力,它是金属的一种重要的加工性能。

塑性指标,是为了衡量金属材料塑性的好坏而采用的某些试验测得的数量上的指标。

常用的试验方法有拉伸试验、压缩试验和扭转试验。

由于各种试验方法都是相对于其特定的受力状态和变形条件的,由此所测定的塑性指标(或成形性能指标),仅具有相对的和比较的意义。

它们说明,在某种受力状况和变形条件下,哪种金属的塑性高,哪种金属的塑性低;或者对于同一种金属,在那种变形条件下塑性高,而在哪种变形条件下塑性低。

16.举例说明杂质元素和合金元素对钢的塑性的影响。

①碳:固溶于铁时形成铁素体和奥氏体,具有良好的塑性。

多余的碳与铁形成渗碳体(Fe 3C),大大降低塑性;②磷:一般来说,磷是钢中的有害杂质,它在铁中有相当大的溶解度,使钢的强度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重,此称为冷脆性。

③硫:形成共晶体时熔点降得很低(例如 FeS的熔点为 1190℃,而 Fe-FeS的熔点为 985℃)。

这些硫化物和共晶体,通常分布在晶界上,会引起热脆性。

④氮:当其质量分数较小(0.002%~0.015%)时,对钢的塑性无明显的影响;但随着氮化物的质量分数的增加,钢的塑性降降低,导致钢变脆。

如氮在α铁中的溶解度在高温和低温时相差很大,当含氮量较高的钢从高温快速冷却到低温时,α铁被过饱和,随后在室温或稍高温度下,氮逐渐以 Fe 4N形式析出,使钢的塑性、韧性大为降低这种现象称为时效脆性。

若在 300℃左右加工时,则会出现所谓“兰脆”现象。

⑤氢:氢脆和白点。

⑥氧:形成氧化物,还会和其他夹杂物(如 FeS)易熔共晶体(FeS-FeO,熔点为910℃)分布于晶界处,造成钢的热脆性。

合金元素的影响:①形成固溶体;②形成硬而脆的碳化物;……17.试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响。

①相组成的影响:单相组织(纯金属或固溶体)比多相组织塑性好。

多相组织由于各相性能不同,变形难易程度不同,导致变形和内应力的不均匀分布,因而塑性降低。

如碳钢在高温时为奥氏体单相组织,故塑性好,而在 800℃左右时,转变为奥氏体和铁素体两相组织,塑性就明显下降。

另外多相组织中的脆性相也会使其塑性大为降低。

②晶粒度的影响:晶粒越细小,金属的塑性也越好。

因为在一定的体积内,细晶粒金属的晶粒数目比粗晶粒金属的多,因而塑性变形时位向有利的晶粒也较多,变形能较均匀地分散到各个晶粒上;又从每个晶粒的应力分布来看,细晶粒时晶界的影响局域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。

由于细晶粒金属的变形不均匀性较小,由此引起的应力集中必然也较小,内应力分布较均匀,因而金属在断裂前可承受的塑性变形量就越大。

③锻造组织要比铸造组织的塑性好。

铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷,故使金属塑性降低。

而通过适当的锻造后,会打碎粗大的柱状晶粒获得细晶组织,使得金属的塑性提高。

18’变形温度对金属塑性的影响:就大多数金属而言,其总的趋势是:随着温度的升高,塑性增加,但是这种增加并非简单的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属塑性降低。

随着温度的升高,一方面金属的塑性和可锻性提高,另一方面由于晶粒的粗大化,以及金属内化合物、析出物或第二相的存在和变化等原因,而出现塑性不随温度而增加的各种情况。

19.什么是温度效应?冷变形和热变形时变形速度对塑性的影响有何不同?温度效应:由于塑性变形过程中产生的热量使变形体温度升高的现象。

(热效应:塑性变形时金属所吸收的能量,绝大部分都转化成热能的现象)一般来说,冷变形时,随着应变速率的增加,开始时塑性略有下降,以后由于温度效应的增强,塑性会有较大的回升;而热变形时,随着应变速率的增加,开始时塑性通常会有较显著的降低,以后由于温度效应的增强,而使塑性有所回升,但若此时温度效应过大,已知实际变形温度有塑性区进入高温脆区,则金属的塑性又急速下降。

相关主题