当前位置:文档之家› 润滑油添加剂

润滑油添加剂

润滑油添加剂市场调研论文(天津渤海职业技术学院300402 石油111 30号)【摘要】:随着机械工业的发展,对润滑油的要求越来越高,现代设备对润滑材料的耐高温、高压、高速、防腐蚀等要求越来越高,近年来润滑油技术的不断发展,特别是润滑油添加剂的应用,介绍了清净分散剂、黏度指数增进剂、抗氧化剂、增粘降凝剂、磨擦调整剂、抗磨损添加剂、极压添加剂、消泡剂等,从而大大改善了设备的润滑状态,确保设备高效、安全运行并且其中几种添加剂国际国外市场概况及发展。

【关键词】:润滑油添加剂应用发展趋势添加剂是化学复合物质,可以改善很多润滑油的性能,他们可以加强已有的性能,抑制不想要的性能,產生变化的发生速率,同时可以加入基础油新的有用的性能。

添加剂最初在1920年代开始使用后,它的使用即迅速的增加,现今每一种润滑油几乎都含至少一种添加剂在内,有些含多种不同种类的添加剂,其含量可由几百分之一的%至30%。

添加剂虽然对油的性能表现有所助益,但如用量过多或添加剂间会彼此反应,也是有害的。

所以均衡的添加剂配方并经测试,确认无不良的副作用是很重要的,一旦达成有效的均衡配方后,使用者额外添加外来补充品通常是不需要的。

[6]添加剂的作用:1.改善润滑材料的性能,降低油的凝固点,迅速消除油中的泡味、改善粘温、粘滑特性、增加油膜强度等。

2.保护油脂不氧化变质,延长油脂的使用寿命,提高抗氧化能力,提高抗腐能力,提高抗乳化性能。

3.保护金属不受腐蚀,提高油的防腐性,钝化金属提高防锈能力。

4.增强润滑油脂在恶劣工作条件下的工作能力,增强极压抗磨性,提高机件的抗擦能力,提高机件的磨损自修复能力添加剂可以按下列的功能分成两大类:1.影响基础油的物理与化学性能:物理性能如黏温特性、解乳化性、低温特性等。

化学性能如氧化稳定性。

2.影响与金属表面的物理化学性:如减少磨擦、增加极压表现、防磨损与抗腐蚀等。

添加剂虽然对於润滑油有很大的影响,但有些性能是不受影响的,如挥发性、热稳定性、热传导性、消泡性、被压缩性、与沸点等,优良品质的基础油加上均衡与极佳化的添加剂组合,才能调配出高性能的润滑油。

也因此,现今有使用氢裂解与高度氢处理的高精炼基础油,及酯类与PAO的合成基础油越来越多。

一.润滑油添加剂工作原理由于润滑油中加入了高效添加剂,而绝大多数添加剂是极性物质,这些极性物质与金属表面发生反应,形成化学吸附膜,代替了后来润滑膜,使膜更加牢靠,润滑性能更好。

另外,摩擦副在局部高温度压下,添加剂分解出硫、磷、氯等极性物质,这些极性物质与金属反应,也会生成反应物,防止了胶合的发生。

同时,由于添加剂的存在增加了接触面积,降低了接触应力;使表面逐渐趋于光滑,从而大大地改善了润滑状态。

二.润滑油添加剂的分类[6]润滑油添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂等类型。

(1)清净分散剂清净剂和分散剂主要用于内燃机润滑油中起清净作用和分散作用,中和内燃机油中的酸,增溶和分散油泥,保持发动机的清洁,其用量占润滑油添加剂的一半左右。

清净就是不让润滑油在使用过程中产生的胶质、沥青等物质沉积下来;分散就是让润滑油中的胶质、残炭以及燃料燃烧过程中生成的烟垢等物质分散悬浮于油中,以便润滑油在循环过程中通过机油滤清器除去。

因此,清净剂应当是在内燃机高温区域内能阻止或抑制润滑油氧化变质而生成沉积的物质,它大多是金属有机化合物;分散剂则应当是在内燃机低温区域内能使生成的油泥很好地分散在油中的物质,这些物质大都是不含金属的有机聚合物。

清净分散剂主要作用是使发动机内部保持清洁,使生成的不溶性物质呈胶体悬浮状态,不至于进一步形成积炭、漆膜或油泥。

具体说来,其作用可分为酸中和、增溶、分散和洗涤等四方面。

清净分散剂的结构,基本上是由亲油、极性和亲水三个基团组成,由于结构的不同,导致清净分散剂的性能有所不同,一般来说,有灰添加剂的清净性较好,无灰添加剂的分散性突出。

20世纪30年代末至40年代中期,出现了酚盐、磺酸盐及水杨酸盐等金属清净剂。

50年代Shell公司、Lubrizol公司率先研制出高碱金属清净剂,解决了由于大功率增压柴油机、船用柴油机燃烧高硫燃料引起的活塞沉积增加、缸套磨损等问题。

此后,Lubrizol、Chevron、Shell公司又先后开发了低、中、高及超高碱值酚盐、磺酸盐及水杨酸盐等金属清净剂,以满足调配各种油品需求。

进入90年代,由于发动机小型化、大功率、高速度的发展,传统的金属清净剂已不能满足要求,另外环境法规的苛刻也使得原来有毒的灰分高的含硫磷氯添加剂使用受到限制,各国纷纷开发研究新型的金属清净剂,如镁盐、过碱性清净剂等。

[2]20世纪50年代初期由于金属清净剂对抑制低温油泥生成的效果不理想,1955年美国杜邦公司开发了聚合物型无灰分散剂,但它们的热稳定性不好,改善低温油泥效果不理想。

60年代开发了非聚合物型丁二酰亚胺无灰分散剂,目前以丁二酰亚胺为基础的无灰分散剂已成为主流,其用量占80%以上。

目前丁二酰亚胺无灰分散剂的生产仍以氯化工艺为主,只有不到5%的厂家采用对环境污染小的热加合工艺。

近年来,又先后研制了高分子量无灰分散剂、酯类无灰分散剂、双酐性无灰分散剂、多酰胺无灰分散剂、超高碱烷基水杨酸钙(镁)等新型无灰分散剂,并有部分产品投入工业化生产。

这些产品为研制下一代复合剂创造了条件。

无灰分散剂的研究发展方向是更好的油泥和漆膜控制能力,优良的烟炱分散能力,改善低温性能,低温粘度小,与其它添加剂相容性好,耐水性好,并可生物降解。

(2) 增粘降凝剂又称增稠剂,主要是聚俣型有极高分子化合物,增粘剂不仅可以增加油品的粘度,并可改善油品的粘温性能。

增粘降凝剂是一类用量较大,开发较早,目前仍广泛使用的润滑油添加剂。

降凝剂的总体用量较少且品种没有太多的改变,本文仅就粘度指数改进剂的技术现状及发展趋势进行探讨。

粘度指数改进剂(VII)是一种油溶性的高分子聚合物,在室温下呈固体或流体。

加入油品中能有效地改善粘温性能,提高粘度指数,此外还具有降低燃料消耗,维持低油耗,提高低温启动性的作用。

国外50年代为改善油品的粘温性能使用了聚甲基丙烯酸酯(PMA)和聚异丁烯(PIB)。

60年代末70年代初开发了乙丙共聚物(OCP)和苯乙烯—双烯共聚物,其中OCP已工业化,其销售量占60%以上。

OCP的发展以Exxon为代表,其系列化产品已应用于各种油品中。

由于分散性的VII能减少无灰分散剂的用量,避免了因解决低温油泥问题,增加无灰分散剂用量而引起的粘度增加。

因此,近年来分散型VII研究的较多。

另外,具有分散性,抗氧性,抗磨性的多功能VII的研究也引起国外各大公司的注意。

我国对于粘度指数改进剂的研发速度很快,目前已生产应用的有聚异丁烯、聚甲基丙烯酸脂和乙烯-丙烯共聚物。

国内VII的用量与国外相当,但品种不平衡,其中PIB的用量达到80%以上。

PIB的剪切稳定性和低温性能差,在配制低粘度多级油时受到限制。

近年来,随着低档油品的淘汰,OCP的用量逐步上升,并且品种在逐步多样化。

随着发动机的法规越来越苛刻,发动机机油对所使用的油溶性的高聚物的要求也越来越高。

研制增稠能力强,剪切稳定性好,又不使清净性变差的环保型、可生物降解的高分子聚合物是今后粘度指数改进剂的发展方向。

[2](3)抗氧抗腐剂当油温度在有氧存在的情况下升高时,氧化就会发生,氧化的结果是黏度与有机酸的浓度会增加。

油氧化的速率受几个因素影响,当油温增加时,氧化速率成指数倍增。

一般常理是矿物油温每增加18°F(10 °C),油氧化的速率增加一倍;如让油大量暴露於空气或将空气搅入油中,油氧化的速率也会增加。

有些金属,特别是铜与铁,及有机酸与矿物酸类,都具有催化与促进油氧化的作用。

油氧化一般是油中的自由基与氧结合,所以如能阻止这种反应,即可达到抑制氧化的效果。

向油中加入抗氧抗腐剂后,能在金属表面生成保护膜,起到以下三种作用:一是防止金属的氧化催化作用,延缓润滑油的氧化速度;二是隔绝了酸性氧化产物与金属的直接接触,从而防止了金属的腐蚀;三是生成的保护膜具有良好的抗磨性能,从而能减少机械零件的磨损。

抗氧化剂有两种:一种是与自由基反应成较不活性的物质,一种是分解那些具自由基的物质,成為较不活性的化合物。

当油温低於200°F(93°C)时,氧化的速率较慢,第一种抗氧化剂是有效的;但当油温高於200°F(93°C)时,金属的氧化催化效果是油氧化的重要的因素,在这种情况下,抗氧化剂的使用即应抑制或减少金属催化的作用,这些抗氧化剂通常会与金属表面形成一层保护膜,因此这类的物质也可称為金属惰化剂。

常用的抗氧化剂是二硫磷酸锌(Zinc Dithiophosphate),它一方面具金属惰化,一方面油温高於200°F(93°C)时,也具分解那些具自由基的物质成為较不活性的化合物。

抗氧化剂主要包括酚型抗氧剂、胺型抗氧剂、硫磷型抗氧剂及其它类型抗氧剂。

高分子酚型抗氧剂如双酚抗氧剂、S-连双酚抗氧剂、酚酯型抗氧剂在内燃机油中得到广泛应用。

随着汽车向高速、高负荷方向发展,对油品提出了更高的抗氧化要求。

同时,传统矿物油在精制过程中除去了天然的抗氧剂,必须加入更多的抗氧剂。

传统抗氧剂中T501的销售量最多,但其使用温度低,易挥发,仅适用于100℃以下的润滑油。

为了改善高温性能,高分子酚型抗氧剂如双酚抗氧剂、S-连双酚抗氧剂、酚酯型抗氧剂在内燃机油中得到广泛应用,尤其酚酯型抗氧剂在高档油品(CF4、CI4)中有明显的效果。

胺类抗氧剂成本较高,但高温抗氧性好,有生成沉淀的趋势和潜在的毒性,曾一度使用受到限制。

早期的N-苯基-α萘胺及衍生物因证明是致癌物被淘汰后,胺型抗氧剂毒性大的说法减少了,在某些领域的使用已超过酚型抗氧剂。

ZDDP系列抗氧剂具有抗氧、抗磨、抗腐等多种性能,是内燃机油中主要的添加剂之一,由于其所含磷易使催化转化器中的催化剂中毒,目前采取加入含铜辅助抗氧剂的方法,为研制低磷内燃机油创造了有利条件。

随着环保及原料材质的日益苛刻化,研制多功能、低灰或无灰的高温抗氧剂已为各大公司所重视。

[2](4)抗磨损添加剂按照作用机理的不同,大致可以分为两大类:活性和非活性添加剂。

活性添加剂主要是指分子结构中含有硫、磷、氮等活性元素,可以与金属表面发生化学反应形成保护膜的化合物;非活性添加剂主要是通过自身或其分解产物在摩擦表面形成保护膜的添加剂,如硼化合物、硅化合物、铝化合物等。

当极重或冲击负荷很大产生局部高温接近到200℃以上时,油性剂化学吸附膜将失去作用,此时则必需采用极压剂。

相关主题