/article/11-09/422921315975560.html
频谱感知,是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息。
从无线网络的功能分层角度看,频谱感知技术主要涉及物理层和链路层,其中物理层主要关注各种具体的本地检测算法,而链路层主要关注用户间的协作以及对本地感知、协作感知和感知机制优化3 个方面。
因此,目前频谱感知技术的研究大多数集中在本地感知、协作感知和感知机制优化3个方面。
文章正是从这3个方面对频谱感知技术的最新研究进展情况进行了总结归纳,分析了主要难点,并在此基础上讨论了下一步的研究方向。
1 本地感知技术
1.1 主要检测算法
本地频谱感知是指单个认知用户独立执行某种检测算法来感知频谱使用情况,其检测性能通常由虚警概率以及漏检概率进行衡量。
比较典型的感知算法包括:
能量检测算法,其主要原理是在特定频段上,测量某段观测时间内接收信号的总能量,然后与某一设定门限比较来判决主信号是否存在。
由于该算法复杂度较低,实施简单,同时不需要任何先验信息,因此被认为是CR系统中最通用的感知算法。
匹配滤波器检测算法,是在确知主用户信号先验信息(如调制类型,脉冲整形,帧格式)情况下的最佳检测算法。
该算法的优势在于能使检测信噪比最大化,在相同性能限定下较能量检测所需的采样点个数少,因此处理时间更短。
循环平稳特征检测算法,其原理是通过分析循环自相关函数或者二维频谱相关函数的方法得到信号频谱相关统计特性,利用其呈现的周期性来区分主信号与噪声。
该算法在很低的信噪比下仍具有很好的检测性能,而且针对各种信号类型独特的统计特征进行循环谱分析,可以克服恶意干扰信号,大大提高检测的性能和效率。
协方差矩阵检测算法,利用主信号的相关性建立信号样本协方差矩阵,并以计算矩阵最大、最小特征值比率的方法做出判决。
文献[1]提出基于过采样接收信号或多路接收天线的盲感知算法。
通过对接收信号矩阵的线性预测和奇异值分解(QR)得到信号统计值的比率来判定是否有主用户信号。
以上这些算法都是对主用户发射端信号的直接检测,基本都是从经典的信号检测理论中移植过来的。
此外,近期一些文献从主用户接收端的角度提出了本振泄露功率检测和基于干扰温度的检测。
有些文献对经典算法进行了改进,如文献[2]提出了一种基于能量检测-循环特征检测结合的两级感知算法。
文献[3]研究了基于频偏补偿的匹配滤波器检测、联合前向和参数匹配的能量检测、多分辨率频谱检测和基于小波变换频谱检测等。
表2归纳了文献中提及较多的一些感知算法,并对其优缺点进行了比较。
1.2 有待解决的问题
单用户本地感知主要面临以下挑战:首先,对感知设备提出了较高的硬件要求,如高速高分辨率的数模转换器、高速的信号处理器、宽带射频(RF)单元、单 /双链路结构等等,以达到所需的检测速度和灵敏度;其次,由于多径衰落、阴影和本地干扰等因素的影响,单用户本地频谱检测往往不能获得满意的性能。
再次,如何检测基于扩频技术的主用户信号也是个难点问题。
Ghasemi将频谱感知的主要难点问题归结于3种不确定性:信道不确定性,即在阴影、衰落信道中,认知用户很难从噪声背景下区分出经历深衰落的主信号;噪声不确定性,主要是能量检测的性能会因为噪声估计的偏差受到严重影响;聚合干扰不确定性,当网络中存在多个认知用户时,单个认知用户的发射可能不会干扰主用户,但是多个用户同时发射可能会超过主用户的干扰温度门限(最大干扰的容忍程度)。
基于以上分析,下一步的主要研究方向包括:针对衰落、阴影等恶劣的信道环境,研究能量检测、循环特征检测等算法的改进或者进一步探讨更为新颖的感知算法;针对正交频分复用技术(OFDM)频谱池系统的多带检测算法;将传统的时域、频域、空域的三维信号检测进行拓展,并研究包括角度、编码等维度的多维频谱感知算法。
2 协作感知技术
为了克服本地检测的弊端,进一步提高检测性能,协作感知得到了广泛而深入的研究。
通过不同次用户间的交互与协作,不仅仅能降低各认知用户的检测灵敏度需求,大幅度提高认知用户的捷变能力,还能有效缓解"隐藏终端"问题以及噪声不确定性等问题。
2.1 协作方案的分类
根据协作网络结构和协作策略选择不同,协作感知方案可分两类:
(1)集中式协作感知
这种方案中,通常有一个中心基站(或接入点)和多个参与协作的认知用户(也称认知节点),并且需要专用控制信道将各用户本地感知信息传送到中心点进行融合处理以及最终判决。
目前大部分文献研究的都是该类型的协作感知。
Cabric等人于2004年开始这方面研究,指出集中式协作感知可以减小多径衰落信道的影响,改善检测性能,并分析了节点数、门限值等参数的选取以及阴影相关性对协作的影响[4].随后,Ghasemi更加详细讨论了在独立同分布(I.I.D.)瑞利衰落信道和对数正态分布阴影信道条件下,基于能量检测和硬融合的协作感知方案的检测性能及其对频谱利用率、检测灵敏度、检测时间带宽积、噪声不确定性抵抗能力的影响。
文献[5]还从聚合干扰的角度,进一步分析了协作感知对于聚合干扰分布的影响,并在给定干扰概率情况下,给出了单用户感知灵敏度和协作半径之间的权衡。
(2)分布式协作感知
分布式协作感知中,各协作节点彼此可以交互和共享感知信息,并分别对各自感兴趣的频谱做最终判决。
该方案最大的好处是简化了认知网络结构,因而减小了开销成本。
2005年,G.Ganesan等人提出了基于前向放大协议的中继协作感知方案,主要原理是在时分多址(TDMA)系统中,各协作用户间以正交方式传输,一旦某个次用户检测到主用户信息,则在下个时隙发送本身信号的同时转发检测到的主信号给邻近的次用户,再退出频段。
该方案利用了网络所固有的非对称性来提高增益,同样可以降低检测时间,保持较低的中断概率,从而提高网络的捷变性。
2.2 信息融合问题
传统的数据融合是指多传感器的数据在一定准则下加以自动分析、综合以完成所需的决策和评估而进行的信息处理过程。
信息融合最早用于军事领域,定义为一个处理探测、互联、估计以及组合多源信息和数据的多层次多方面过程,以便获得准确的状态和身份估计、完整而及时的战场态势和威胁估计。
它强调信息融合的三个核心方面:第一,信息融合是在几个层次上完成对多源信息的处理过程,其中每一层次都表示不同级别的信息抽象;第二,信息融合包括探测、互联、相关、估计以及信息组合;第三,信息融合的结果包括较低层次上的状态和身份估计,以及较高层次上的整个战术态势估计。
多传感器数据融合是人类或其他逻辑系统中常见的功能。
人非常自然地运用这一能力把来自人体各个传感器(眼、耳、鼻、四肢)的信息(景物、声音、气味、触觉)组合起来,并使用先验知识去估计、理解周围环境和正在发生的事件。
2.2.1 数据融合算法
随着计算机技术、通信技术的快速发展,且日趋紧密地互相结合,加之军事应用的特殊迫切需求,作为数据处理的新兴技术--数据融合技术,在近10年中得到惊人发展并已进入诸多军事应用领域。
数据融合技术,包括对各种信息源给出的有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证、诊断。
这对战场上及时准确地获取各种有用的信息,对战场情况和威胁及其重要程度进行适时的完整评价,实施战术、战略辅助决策与对作战部队的指挥控制,是极其重要的。
未来战场瞬息万变,且影响决策的因素更多更复杂,要求指挥员在最短的时间内,对战场态势作出最准确的判断,对作战部队实施最有效的指挥控制。
而这一系列"最"的实现,必须有最先进的数据处理技术。