第1篇|设计日负荷XXXX项目设计日冷负荷为700RT,即2462KW。
设计日全天冷负荷比较稳定,基本都处于85%~95%负荷左右。
供回水温度为6℃/12℃,6℃温差。
设计日负荷分布情况如下表所示:时间冷负荷冷负荷负荷率备注RT KW %00:00-01:00 626.32 2202.13 85.0001:00-02:00 626.32 2202.13 85.0002:00-03:00 626.32 2202.13 85.0003:00-04:00 626.32 2202.13 85.0004:00-05:00 626.32 2202.13 85.0005:00-06:00 626.32 2202.13 85.0006:00-07:00 626.32 2202.13 85.0007:00-08:00 626.32 2202.13 85.0008:00-09:00 626.32 2202.13 85.0009:00-10:00 700.00 2461.20 95.0010:00-11:00 700.00 2461.20 95.0011:00-12:00 700.00 2461.20 95.0012:00-13:00 700.00 2461.20 95.0013:00-14:00 700.00 2461.20 95.0014:00-15:00 700.00 2461.20 95.0015:00-16:00 700.00 2461.20 95.0016:00-17:00 700.00 2461.20 95.0017:00-18:00 700.00 2461.20 95.0018:00-19:00 700.00 2461.20 95.0019:00-20:00 700.00 2461.20 95.0020:00-21:00 700.00 2461.20 95.0021:00-22:00 700.00 2461.20 95.0022:00-23:00 626.32 2202.13 85.0023:00-00:00 626.32 2202.13 85.00序号负荷百分比最高负荷运行天数运行小时备注1 100% 700RT 90 242 80% 560RT 105 63 75% 525RT 125 244 60% 420RT 45 245 55% 385RT 105 6虑备用机组,因此,与业主沟通了解后,设计需要增加1台432RT的机组。
如下常规电制冷空调配置,主设备参数如下:序号项目参数数量单位备注1 螺杆机组432RT(标准工况) 1 台备12 冷冻水泵220CMH,32M,30KW 1 台备13 冷却水泵275CMH,28M,30KW 1 台备14 冷却塔380T/H,湿球28.5℃,22KW 1 台但是,如果采用冰蓄冷系统,利用夜间8小时低估电期间进行蓄冰,将蓄得的冷量在白天进行释放,充分利用低价电的优势,大大节约运行成本。
冰蓄冷系统除了能节约相当可观的运行成本之外,还有如下几点优势:1)增加冰蓄冷系统,需增加双工况机组及蓄冰盘管等设备,与现有的YS432RT机组三者相互备用;2)如果白天出现紧急停电,常规空调系统将罢工;但是冰蓄冷系统可以继续运转,利用UPG不间断电源,只要驱动水泵就可以继续为末端提供冷量,维持生产线的继续运转,杜绝可能会影响生产线正常运行的不利因素。
冰蓄冷系统的可行性分析将在下述章节进行分析展开。
第2篇| 冰蓄冷系统1. 冰蓄冷系统1.1冰蓄冷系统简介冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 如用电高峰) 把冷量取出来进行利用。
由此可以实现对电网的削峰填谷, 有利于降低发电装机容量, 维持电网的安全高效运行。
冰蓄冷空调系统具有以下主要特点:↘降低空调系统的运行费用。
↘制冷机组的容量小于常规空调系统, 空调系统相应的冷却塔、水泵、输变电系统容量减少。
↘在某些常规空调系统配上冰蓄冷设备, 可以提高30%~50%的供冷能力。
↘可以作为稳定的冷源供应, 提高空调系统的运行可靠性。
↘制冷设备大多处于满负荷的运行状况, 减少开停机次数, 延长设备寿命。
↘对电网削峰填谷, 提高电网运行稳定性、经济性, 降低发电装机容量。
↘减少发电厂对环境的污染。
1.2 蓄冰装置简介1.3 蓄冰装置分类1.4 蓄冰系统2. 主设备选型双工况主机的配置。
冰蓄冷系统中,双工况机组的额定出力会小于常规电制冷空调的额定出力。
设计选用1台空调工况下(6℃/11℃)制冷量≥460RT的双工况螺杆机组,其在制冰工况下(-5.6℃出水)的制冷量为≥328RT。
在标准工况(7℃/12℃)及制冰工况下(-5.6℃出水)的性能参数如表所示:蓄冰装置的配置。
YS双工况机组制冰工况下单小时制冷量为344RT,在夜间低谷电8小时内进行蓄冰,总共蓄得冰量2752RTH,因此需要选择总蓄冰量大于2752RTH的整装式蓄冰装置。
但考虑设备尺寸、型号及经济利益各方面因素,选用国内知名品牌内融冰蓄冰装置4台,单台制冰量为745RTH,型号ITSI-S745,总蓄冰量约为2980RTH > 2752RTH,满足系统蓄冰要求。
如上黑框内为所选产品型号,该型号尺寸为6800mm×2520mm×3176mm。
单台运行重量为51.2T,考虑适当余量,冰槽基础应能承受3.5T/m2。
单台蓄冰盘管纯乙二醇需要2.4T,共4台,纯乙二醇总量为9.60T,考虑适当余量,纯乙二醇总量是10.00T。
盘管阻力6.3m。
板式换热器的配置。
板式换热器的换热量需要考虑到冰蓄冷系统最大换热量,即制冰机制冷量+蓄冰装置最大小时融冰量,此处,最大换热量取830RT,即2918KW。
冰蓄冷板式换热器冷侧(乙二醇侧)进出水温3.0℃/11.0℃,板式换热器热侧(冷冻水侧)进出水温6℃/12℃。
板材采用304。
本方案板式换热器厂家选择著名合资品牌,共1台。
乙二醇循环泵的配置。
循环流量330CMH,扬程需要克服制冰机蒸发器侧阻力(11.0m)、蓄冰盘管阻力(6.3m)、板式换热器冷侧阻力(<8.0m)及管路管件阻力,根据工程实际经验,设计为35m扬程,功率55KW。
乙二醇泵1用1备,共计2台,品牌选用著名合资品牌卧式泵。
变频配置。
板换冷冻泵的配置。
循环流量420CMH,扬程需要克服板式换热器热侧阻力(<8.0m)、末端及管路管件阻力,根据工程实际经验,设计为32m扬程,功率55KW。
板换冷冻泵2台,1用1备,品牌选用著名合资品牌卧式泵。
冷却水泵的配置。
循环流量360CMH,扬程需要克服双工况机组冷凝器侧阻力(9.0m)及管路管件阻力,根据工程实际经验,设计为28m扬程,功率45KW。
冷却水泵2台,1用1备,品牌选用著名合资品牌卧式泵。
开式方形逆流冷却塔的配置。
配置双工况机组用的冷却塔,形式采用开式方形逆流,32℃/37℃,28.5℃湿球温度的标准工况下处理量为450T/H,功率为22kW。
冷却塔选用合资知名品牌冷却塔。
定压装置的配置。
定压装置采用常压定压装置,共计1台,集补水、排气及定压于一身。
膨胀量为600L,功率3.0kW。
主设备参数如下:序号项目参数数量备注1 双工况机组标准工况500RT(7℃/12℃)1台2 蓄冰装置745RTH 4台3 板式换热器830RT 1台4 乙二醇泵330CMH,35M 2台1备5 板换冷冻泵420CMH,32M 2台1备6 冷却水泵360CMH,28M 2台1备7 冷却塔450T/H,28.5℃1台8 乙二醇10吨9 定压装置膨胀量600L 1台第3篇| 流程说明3.1 流程图冰蓄冷系统的流程图如下所示:3.2 流程说明本系统共包括4个功能,需要说明的是,双工况机组运用于冰蓄冷系统,其蒸发器侧进出均为25%乙二醇溶液,通过冰蓄冷板换一直保持与冷冻水管路相互独立。
双工况主机制冰模式:夜间低谷电期间没有冷负荷。
开启新增冷却水泵、冷却塔、乙二醇泵及双工况机组,系统进入制冰工况,制冰机组蒸发器侧出口温度设为-5.6℃。
通过乙二醇泵的降频运行,将制冰机的制冷量通过25%乙二醇溶液储存于新增的蓄冰盘管,以供白天使用。
有3个条件可以确定蓄冰装置蓄冰结束:1)蓄冰装置出口温度达到-5.6℃,说明蓄冰装置蓄冰结束;2)蓄冰装置内部液位到达设计液位,说明蓄冰装置蓄冰结束;3)蓄冰时间到达06:00,即低谷电时间结束,说明蓄冰装置蓄冰结束。
3个条件任一条件满足,即确定蓄冰结束。
双工况主机与蓄冰装置联合供冷模式:当白天末端存在冷负荷时,冰蓄冷系统可以进行制冰机与蓄冰装置联合供冷模式,以主机优先模式运行。
冰蓄冷侧,从板换冷侧出来的高温乙二醇溶液先经过主机降温,温度降到适当的点,进入蓄冰装置进行进一步降温,蓄冰装置出口温度传感器设定值3.0℃(可调)控制蓄冰装置直通与旁通的调节量,确保低温乙二醇溶液以3.0℃(可调)设计温度进入板换冷侧,如此循环。
板换热侧出口处温度传感器设定值6℃(可调)控制板换直通和板换旁通的调节量,从而调整进入板换的乙二醇流量,确保稳定的冷冻水供水温度6℃(可调)。
冷冻水供冷侧,从集水器出来的高温回水经过新增板换冷冻泵,送至板换热侧入口处,通过与冰蓄冷系统的换热,达到设计温度6℃(可调)后再进入分水器中。
如上描述基于冰蓄冷系统出力能满足末端冷负荷的情况,如果出现负荷较高,光靠冰蓄冷系统无法满足末端负荷要求时,可以开启基载主机进行辅助供冷。
双工况机组单独供冷模式:当白天末端存在冷负荷时,冰蓄冷系统可以进行制冰机单独供冷模式。
冰蓄冷侧,制冰机组出口温度设定为4℃(可调),从板换冷侧出来的高温乙二醇溶液经过主机降温,进入蓄冰装置旁通,低温乙二醇溶液直接进入板换冷侧,如此循环。
板换热侧出口处温度传感器设定值6℃(可调)控制板换直通和板换旁通的调节量,从而调整进入板换的乙二醇流量,确保稳定的冷冻水供水温度6℃(可调)。
冷冻水供冷侧,从集水器出来的高温回水经过新增的板换冷冻泵,送至板换热侧入口处,通过与冰蓄冷系统的换热,达到设计温度6℃(可调)后再进入分水器中。
如上描述基于冰蓄冷系统出力能满足末端冷负荷的情况,如果出现负荷较高,光靠制冰机组无法满足末端负荷要求时,可以开启基载主机,也可将蓄冰装置参与供冷(若蓄冰装置尚余冷量未用完)。
融冰单独供冷模式:当白天末端存在冷负荷时,冰蓄冷系统可以进行融冰单独供冷模式。
冰蓄冷侧,从板换冷侧出来的高温乙二醇溶液经过主机(双工况机组并未开启,仅做旁路用),进入蓄冰装置直通与旁通,蓄冰装置出口处温度传感器设定值3.0℃(可调)控制蓄冰装置直通与旁通调节量,3.0℃(可调)低温乙二醇溶液直接进入板换冷侧,如此循环。