当前位置:文档之家› I2C通讯协议(英文原版)I2C_Spec_en

I2C通讯协议(英文原版)I2C_Spec_en

通信电子线路课程设计

通信电子线路课程设计中波电台发射系统与接收系统设计 学院:******* 专业:******* 姓名:**** 学号:******

一.引言 这学期,我们学习了《通信电子线路》这门课,让我对无线电通信方面的知识有了一定的认识与了解。通过这次的课程设计,可以来检验和考察自己理论知识的掌握情况,同时,在本课设结合Multisim软件来对中波电台发射机与接收机电路的设计与调试方法进行研究。既帮助我将理论变成实践,也使自己加深了对理论知识的理解,提高自己的设计能力 二.发射机与接收机原理及原理框图 1.发射机原理及原理框图 发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 通常,发射机包括三个部分:高频部分,低频部分,和电源部分。 高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。发射机系统原理框图如下图: 设计指标: 设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。 技术指标:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。调制频率500Hz~10kHz。 本设计可提供的器件如下,参数请查询芯片数据手册。所提供的芯片仅供参考,可以选择其他替代芯片。 高频小功率晶体管3DG6 高频小功率晶体管3DG12 集成模拟乘法器XCC,MC1496 高频磁环NXO-100 运算放大器μA74l 集成振荡电路E16483 原理及原理框图 接收机的主要任务是从已调制AM波中解调出原始有用信号,主要由输

MODBUS通讯协议说明

1、概述 1.1 引言 通讯规约详细描述了本机通讯的读、写命令格式及信息和数据的定义,以便第三方开发使用。 1. 2 电气特点及符合标准 1) 连接上位机的主通信接口,采用标准串行通讯口,使用接线端子。 2) 信息传输方式为异步方式,字节格式为起始位1位,数据位8位,停止位1位,无校验。 3) 数据传输速率1200b/s, 2400b/s, 4800b/s, 9600b/s, 19200b/s可选,缺省为9600b/s。 4) 符合MODUBS RTU 协议标准。 2、MODBUS RTU通信协议详述 2.1 协议基本规则 以下规则确定在回路控制器和其他串行通信回路中设备的通信规则。 1)所有通讯回路都应遵照主/从方式。依照这种方式,数据可以在一个主站(如:PC)和多个子站之间传递。 任何一次通讯都不能从子站开始。 2)主站将初始化和控制在通讯回路上传递的所有信息。 3)所有回路上的传送均分为两种方式: A) 主/从传送 B) 从/主传送 4)在回路上的所有通讯都以“信息帧”方式传递。 如果主站或子站接收到含有未知命令的信息帧,则不予以响应 “信息帧”就是一个由字节构成的字符串(最多255个字节),是由信息头和发送的编码数据构成标准的异步串行数据,该通讯方式也与RTU通讯规约相兼容。 2.2信息帧结构描述 每个信息帧组成如下: 3、字节格式 通讯传输为异步方式,并以字节为单位。在主站和子站之间传递的每一个字节帧都是10位(无校验位)的串行数据流。 字节帧格式: 4、命令报文格式 4. 1读数据: 主站发送

返回: 5 如:带符号整数范围 -32768---32767 上传数据需除十,正数的范围为16进制0X0000-0X7FFF,负数采用正数的补码方式传输,其范围为16进制0X8000-0XFFFF, 如: 湿度上传16进制 0X0311,对应十进制785,表示78.5% 温度上传16进制 0X00FF,对应十进制255,表示25.5℃ 温度上传16进制 0XFF9B,对应十进制100(0XFFFF-0XFF9B=0X64), 表示-10.0℃ 6、网络采样定时 温湿度传感器中,上位机读取数据每次间隔时间不小于500ms,推荐值1s。 7、命令举例: 读取温度湿度数据: 上位机发送:01 04 00 00 00 02 71 CB (温湿度地址为1,寄存器起始地址为0,读2个字节) 下位机返回:01 04 04,温度H,温度L,湿度H,湿度L,CRCL,CRCH。 只读温度数据: 上位机发送: 01 04 00 00 0 001 31 CA(温湿度地址为1,寄存器起始地址为0,读1个字节) 下位机返回: 01 04 02,温度H,温度L,CRCH,CRCL。 只读湿度数据: 上位机发送: 01 04 00 01 0 001 60 0A(温湿度地址为1,寄存器起始地址为1,读1个字节) 下位机返回: 01 04 02,湿度H,湿度L,CRCH,CRCL。 设置地址: 上位机发送:01 06 00 64 00 02 49 D4(温湿度原地址1改为2) 下位机返回:01 06 00 64,地址H,地址L, CRCL,CRCH。

合工大通信电子线路课程设计报告

通信电子线路课程设计 设计报告 学院:计算机与信息学院 : 学号: 班级:通信工程14-2班 指导老师:正琼

目录 键入章标题(第1 级)1 键入章标题(第2 级) 2 键入章标题(第3 级) 3 键入章标题(第1 级)4 键入章标题(第2 级) 5 键入章标题(第3 级) 6

设计课题一 LC 正弦波振荡器的设计 1. 设计容和主要技术指标要求 ● 设计容:设计一个LC 正弦波振荡器 ● 已知条件: 三极管 负载 ● 主要技术指标要求: ① 谐振频率?0 = 5MHz ② 频率稳定度o c f f ≤510–4/小时 ③ 输出峰峰值 2. 设计方案选择 ● 方案选择 ① 电感三点式振荡器

优点:由于1L和2L之间有互感存在,所以容易起振。其次是频率易调(调C)。 缺点:与电三点式振荡器相比,其输出波形差。这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,波形失真较大。其次是当工作频率较高时,由于1L和2L上的分布电容和晶体管的极间电容均并联于1L与2L两端,这样,反馈系数F随频率变化而变化。 工作频率愈高,分布参数的影响也愈严重,甚至可能使F减小到满足不了起振条件。因此,优先选择的还是电容反馈振荡器。 电容三点式振荡器 优点:高次谐波成分小,输出波形好,其次振荡频率可以做得很高,因而本电路适用于较高的工作频率。

缺点:频率不易调(调L,调节围小),调1C 或2C 来改变震荡频率时,反馈系数也将改变。但只要在L 两端并上一个可变电容器,并令1C 与2C 为固定电容,则在调整频率时,基本上不会影响反馈系数。 克拉波振荡器 优点:频率可调,,其次改变F 不 受影响,与 无关,故比较稳定。 缺点:频率不能太高,波段围不宽,波段覆盖系数一般约为1.2~1.3,波段输出幅度不平稳,实际中常用于固定频率振荡器。 ○ 4 西勒振荡器 优点:振荡频率可以很高,且在波段振幅比较稳定,调谐围比较 4 C

实验八 IIC通信协议

实验八I2C通信协议 一、实验目的: 1、培养学生阅读资料的能力; 2、加深学生对I2C总线通信协议的理解; 3、加强学生对模块化编程的理解; 二、实验环境: 1、硬件环境:PC机一台、单片机实验板一块、母头串口交叉线、USB电源线; 2、软件环境:keil uVision2集成开发环境; STC-ISP下载上位机软件; 三、实验原理: 要学会I2C通信协议的编程,关键是要看懂并掌握其时序图,理解对I2C通信协议相关子程序的实验编写。I2C通信协议的总线时序图如下所示: I2C总线时序图 I2C相关子程序的详细介绍 1、起始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 2、结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 起始信号和结束信号的时序图如下所示: 起始信号和结束信号的时序图 起始信号的流程如下:

1、SCL和SDA拉高,保持时间约为0.6us-4us; 2、拉低SDA,保持时间为约为0.6us-4us; 3、拉低时钟线 结束信号的流程如下: 1、SCL置高电平,SDA置低电平,保持时间约为0.6us-4us 2、SDA拉高,保持时间约为1.2-4us; 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。 若未收到应答信号,由判断为受控单元出现故障。应答信号的时序图如下所示: 应答时序图 发送时的应答信号 ;**********应答信号********** ACK: SETB SDA ;数据线置高 SETB SCL ;时钟线置高 ACALL DELAY JB SDA,$ ;等待数据线变低 ACALL DELAY CLR SCL ;时钟线置低 RET 注意:这里如果数据线一直为高将进入死循环,所以一般我们都会在这做一个容错的处理。具体的程序如下: ACK: MOV R4,#00H SETB SDA SETB SCL LOP0: JNB SDA,LOP DJNZ R4,LOP0 ;循环255次 LOP: ACALL DEL CLR SCL RET 接收时的应答信号

基于MSP430的I2C模拟总线程序讲解

程序和流程图: IIC.h void Init_IIC(void); void EEPROM_ByteWrite(unsigned char nAddr,unsigned char nVal); unsigned char EEPROM_RandomRead(unsigned char nAddr); unsigned char EEPROM_CurrentAddressRead(void); void EEPROM_AckPolling(void); void Init_CLK(void); void Init_IIC_Port(void); Main.C /******************************************* IIC for AT24c16 OR AT24CXXX 系列 只要控制好IICRM IICSTP IICSTT 其硬件会自动完成 SCL SDA的一系列时序只要注意各个发送与接收的控制标志位. ******************************************/ #include #include "IIC.h" volatile unsigned char Data[6]; void main(void) { //volatile unsigned char Data[6];

//停止看门狗 WDTCTL = WDTPW+WDTHOLD; //初始化端口 Init_IIC_Port(); //初始化时钟 Init_CLK(); //I2C初始化 Init_IIC(); //置传输方式及控制方式 //打开中断 _EINT(); //写入数据 EEPROM_ByteWrite(0x0000,0x12); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0001,0x34); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0002,0x56); //等待写操作完成

rs485总线通讯协议

竭诚为您提供优质文档/双击可除 rs485总线通讯协议 篇一:Rs485通讯协议说明 摘要:阐述了Rs-485总线规范,描述了影响Rs-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。 关键词:Rs-485现场总线信号衰减信号反射 当前自动控制系统中常用的网络,如现场总线can、profibus、inteRbus-s以及aRcnet的物理层都是基于 Rs-485的总线进行总结和研究。 一、eiaRs-485标准 在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在Rs-422标准的基础上,eia研究出了一种支持多节点、远距离和接收高灵敏度的Rs-485总线标准。 Rs-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 接收器的输入电阻Rin≥12kΩ 驱动器能输出±7V的共模电压

输入端的电容≤50pF 在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”)因为Rs-485的远距离、多节点(32个)以及传输线成本低的特性,使得eiaRs-485成为工业应用中数据传输的首选标准。 二、影响Rs-485总线通讯速度和通信可靠性的三个因素 1、在通信电缆中的信号反射 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。

通信电子线路课程设计报告——电感三点式正弦波振荡器

课程设计报告 课题名称_____通信电子线路课程设计_ 学院电子信息学院 专业 班级 学号 姓名 指导教师

目录 摘要 ............................................................................................ I 1绪论.. (1) 2正弦波振荡器 (2) 2.1 反馈振荡器产生振荡的原因及其工作原理 (2) 2.2平衡条件 (3) 2.3起振条件 (3) 2.4稳定条件 (4) 3电感三点式振荡器 (5) 3.1三点式振荡器的组成原则 (5) 3.2电感三点式振荡器 (5) 3.3 振荡器设计的模块分析 (6) 4 仿真与制作 (10) 4.1仿真. (10) 4.2分析调试 (12) 5 心得体会...................................13= 参考文献 (14)

摘要 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。 正弦波振荡器在各种电子设备中有着广泛的应用。例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化范围)。 关键词:高频、电感、振荡器

简单的I2C协议理解 i2c程序(调试通过)

简单的I2C协议理解 一. 技术性能: 工作速率有100K和400K两种; 支持多机通讯; 支持多主控模块,但同一时刻只允许有一个主控; 由数据线SDA和时钟SCL构成的串行总线; 每个电路和模块都有唯一的地址; 每个器件可以使用独立电源 二. 基本工作原理: 以启动信号START来掌管总线,以停止信号STOP来释放总线; 每次通讯以START开始,以STOP结束; 启动信号START后紧接着发送一个地址字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R /W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据; 当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号; 每个数据字节在传送时都是高位(MSB)在前; 写通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK); 4. 主控收到ACK后开始发送第一个数据字节; 5. 被控器收到数据字节后发送一个ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 读通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信

号(ACK); 4. 主控收到ACK后释放数据总线,开始接收第一个数据字节; 5. 主控收到数据后发送ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 四. 总线信号时序分析 1. 总线空闲状态 SDA和SCL两条信号线都处于高电平,即总线上所有的器件都释放总线,两条信号线各自的上拉电阻把电平拉高; 2. 启动信号START 时钟信号SCL保持高电平,数据信号SDA的电平被拉低(即负跳变)。启动信号必须是跳变信号,而且在建立该信号前必修保证总线处于空闲状态; 3. 停止信号STOP 时钟信号SCL保持高电平,数据线被释放,使得SDA返回高电平(即正跳变),停止信号也必须是跳变信号。 4. 数据传送 SCL线呈现高电平期间,SDA线上的电平必须保持稳定,低电平表示0(此时的线电压为地电压),高电平表示1(此时的电压由元器件的VDD决定)。只有在SCL线为低电平期间,SDA上的电平允许变化。 5. 应答信号ACK I2C总线的数据都是以字节(8位)的方式传送的,发送器件每发送一个字节之后,在时钟的第9个脉冲期间释放数据总线,由接收器发送一个ACK(把数据总线的电平拉低)来表示数据成功接收。 6. 无应答信号NACK 在时钟的第9个脉冲期间发送器释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途: a. 一般表示接收器未成功接收数据字节; b. 当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。 五. 寻址约定

通讯方式和通讯协议介绍

目录 一、RS232的串口通讯 (2) 应用 (2) 工作方式 (2) 接口标准 (2) 电路组成 (3) 概述 (3) 简介 (3) 二、RS485串行通讯 (3) 简介 (3) 接口 (4) 电缆 (4) 布网 (5) 区别 (5) 三、串行通信 (6) 概念 (6) 分类 (7) 同步通信 (7) 异步通信 (7) 特点 (7) 形式和标准 (7) 调幅方式 (7) 调频方式 (8) 数字编码方式 (8) 数据传输率 (8) 发送时钟和接收时钟 (9) 异步通信协议 (9) 通信协议 (10) 普遍协议 (10) USB (11) IEEE 1394 (11) 相关应用 (12) 四、通讯协议 (12) 简介 (12) 详细介绍 (13) TCP/IP (13) IPX/SPX (13) NetBEUI (14) 通信协议 (14) RS-232-C (14) RS-449 (14) V.35 (15) X.21 (15) HDLC (15) 管理协议 (15) SNMP (15) PPP (16)

一、RS232的串口通讯 应用 随着计算机系统的应用和微机网络的发展,通信功能越来越显得重要.这里所说的通信是指计算机与外界的信息交换.因此,通信既包括计算机与外部设备之间,也包括计算机和计算机之间的信息交换.由于串行通信是在一根传输线上一位一位的传送信息,所用的传输线少,并且可以借助现成的电话网进行信息传送,因此,特别适合于远距离传输.对于那些与计算机相距不远的人-机交换设备和串行存储的外部设备如终端、打印机、逻辑分析仪、磁盘等,采用串行方式交换数据也很普遍.在实时控制和管理方面,采用多台微机处理机组成分级分布控制系统中,各CPU 之间的通信一般都是串行方式.所以串行接口是微机应用系统常用的接口。许多外设和计算机按串行方式进行通信,这里所说的串行方式,是指外设与接口电路之间的信息传送方式,实际上,CPU 与接口之间仍按并行方式工作. 工作方式 由于CPU 与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有" 接收移位寄存器" (串→并)和" 发送移位寄存器" (并→串). 在数据输入过程中,数据1 位1 位地从外设进入接口的" 接收移位寄存器",当" 接收移位寄存器" 中已接收完1 个字符的各位后,数据就从" 接收移位寄存器" 进入" 数据输入寄存器" . CPU 从" 数据输入寄存器" 中读取接收到的字符.(并行读取,即D7~D0 同时被读至累加器中). " 接收移位寄存器" 的移位速度由" 接收时钟" 确定. 在数据输出过程中,CPU 把要输出的字符(并行地)送入" 数据输出寄存器"," 数据输出寄存器" 的内容传输到" 发送移位寄存器",然后由" 发送移位寄存器" 移位,把数据1 位 1 位地送到外设. " 发送移位寄存器" 的移位速度由" 发送时钟" 确定. 接口中的" 控制寄存器" 用来容纳CPU 送给此接口的各种控制信息,这些控制信息决定接口的工作方式. " 状态寄存器" 的各位称为" 状态位",每一个状态位都可以用来指示数据传输过程中的状态或某种错误.例如,用状态寄存器的D5 位为"1" 表示" 数据输出寄存器" 空,用D0 位表示" 数据输入寄存器满",用D2 位表示" 奇偶检验错" 等. 能够完成上述" 串<- -> 并" 转换功能的电路,通常称为" 通用异步收发器" (UART :Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550 接口标准 ⑴实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。

通信电子线路课程设计

通信电子线路课程设计 学院信息工程学院班级通信0711 姓名邱加钦学号 2007830029 成绩指导老师马中华陈红霞 2010年 1 月 4 日

通信电子线路课程设计报告 一设计名称:调频无线话筒的设计 二设计时间:2010年1月1日~1月5日 三设计地点:集美大学信息工程学院通信实验室 四指导老师:马中华、陈红霞 五设计目的: 1,了解无线话筒的发射原理; 2,熟练掌握protel设计; 3,完成简单的无线话筒制作; 4,通过制作和检测无线话筒,加深对放功率放大器的认识。 六设计原理 调频无线话筒是一种可以将声音或者歌声转换成88~108MHz的无线电波发射出去,距离可以达到30~50m,用普通调频收音机或者带收音机功能的手机就可以接收。 将声音调制到高频载波上,可以用调幅的方法,也可以用调频的方法。 与调幅相比,调频具有保真度好,抗干扰性强的优点,缺点是占用频带较宽。 调频的方式一般用于超短波波段。 1、调频无线话筒的框图如下: T2 图1 调频话筒框图 2、设计原理图:

图2 试验原理图 晶体管T1和其周围的电路构成高频振荡器,振荡频率由L、C4、C5、T1的结电容决定。 加至T1管基极的音频信号电压,会使c-b结电容随它变化,从而实现调频。 C4可改变中心频率的选择(88~108MHz)。 T1输出调频信号,通过C7耦合到T2管的基极,经过T2管放大后从天线辐射出去。T2管构成高频放大器,还有缓冲作用,隔离了天线对高频振荡器的影响,使振荡频率更加稳定。 七设计内容 1,protel设计 (1)电路原理图设计。按设计原理图进行电路原理图的绘制。如图3示。

I2C总线协议规范 v2.1

THE I2C-BUS SPECIFICATION VERSION 2.1 JANUARY 2000

CONTENTS 1PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1Version 1.0 - 1992. . . . . . . . . . . . . . . . . . . . 3 1.2Version 2.0 - 198. . . . . . . . . . . . . . . . . . . . . 3 1.3Version 2.1 - 1999. . . . . . . . . . . . . . . . . . . . 3 1.4Purchase of Philips I2C-bus components . . 3 2THE I2C-BUS BENEFITS DESIGNERS AND MANUFACTURERS. . . . . . . . . . . . . . .4 2.1Designer benefits . . . . . . . . . . . . . . . . . . . . 4 2.2Manufacturer benefits. . . . . . . . . . . . . . . . . 6 3INTRODUCTION TO THE I2C-BUS SPECIFICATION . . . . . . . . . . . . . . . . . . . . .6 4THE I2C-BUS CONCEPT . . . . . . . . . . . . . . .6 5GENERAL CHARACTERISTICS . . . . . . . . .8 6BIT TRANSFER . . . . . . . . . . . . . . . . . . . . . .8 6.1Data validity . . . . . . . . . . . . . . . . . . . . . . . . 8 6.2START and STOP conditions. . . . . . . . . . . 9 7TRANSFERRING DATA. . . . . . . . . . . . . . .10 7.1Byte format . . . . . . . . . . . . . . . . . . . . . . . . 10 7.2Acknowledge. . . . . . . . . . . . . . . . . . . . . . . 10 8ARBITRATION AND CLOCK GENERATION . . . . . . . . . . . . . . . . . . . . . .11 8.1Synchronization . . . . . . . . . . . . . . . . . . . . 11 8.2Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 12 8.3Use of the clock synchronizing mechanism as a handshake. . . . . . . . . . . 13 9FORMATS WITH 7-BIT ADDRESSES. . . .13 107-BIT ADDRESSING . . . . . . . . . . . . . . . . .15 10.1Definition of bits in the first byte . . . . . . . . 15 10.1.1General call address. . . . . . . . . . . . . . . . . 16 10.1.2START byte . . . . . . . . . . . . . . . . . . . . . . . 17 10.1.3CBUS compatibility. . . . . . . . . . . . . . . . . . 18 11EXTENSIONS TO THE STANDARD- MODE I2C-BUS SPECIFICATION . . . . . . .19 12FAST-MODE. . . . . . . . . . . . . . . . . . . . . . . .19 13Hs-MODE . . . . . . . . . . . . . . . . . . . . . . . . . .20 13.1High speed transfer. . . . . . . . . . . . . . . . . . 20 13.2Serial data transfer format in Hs-mode. . . 21 13.3Switching from F/S- to Hs-mode and back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4Hs-mode devices at lower speed modes. . 24 13.5Mixed speed modes on one serial bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13.5.1F/S-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.2Hs-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.3Timing requirements for the bridge in a mixed-speed bus system. . . . . . . . . . . . . . 27 1410-BIT ADDRESSING. . . . . . . . . . . . . . . . 27 14.1Definition of bits in the first two bytes. . . . . 27 14.2Formats with 10-bit addresses. . . . . . . . . . 27 14.3General call address and start byte with 10-bit addressing. . . . . . . . . . . . . . . . . . . . 30 15ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES. . . . . . . . . . . . . . . . . . . . 30 15.1Standard- and Fast-mode devices. . . . . . . 30 15.2Hs-mode devices. . . . . . . . . . . . . . . . . . . . 34 16ELECTRICAL CONNECTIONS OF I2C-BUS DEVICES TO THE BUS LINES . 37 16.1Maximum and minimum values of resistors R p and R s for Standard-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 39 17APPLICATION INFORMATION. . . . . . . . . 41 17.1Slope-controlled output stages of Fast-mode I2C-bus devices. . . . . . . . . . . . 41 17.2Switched pull-up circuit for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 41 17.3Wiring pattern of the bus lines. . . . . . . . . . 42 17.4Maximum and minimum values of resistors R p and R s for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 17.5Maximum and minimum values of resistors R p and R s for Hs-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 18BI-DIRECTIONAL LEVEL SHIFTER FOR F/S-MODE I2C-BUS SYSTEMS . . . . 42 18.1Connecting devices with different logic levels. . . . . . . . . . . . . . . . . . . . . . . . . 43 18.1.1Operation of the level shifter . . . . . . . . . . . 44 19DEVELOPMENT TOOLS AVAILABLE FROM PHILIPS. . . . . . . . . . . . . . . . . . . . . 45 20SUPPORT LITERATURE . . . . . . . . . . . . . 46

通信电路与系统课程设计2018

“通信电路与系统”课程设计任务及要求 一、课程设计题目: 1. 调频发射机设计 主要技术指标: 工作中心频率?0=6. 5MH Z或10.7MH Z, 发射功率P A≥ 50 mw效率ηA> 50%负载R L = 51Ω, 最大频偏Δ?max =20KHz 2. 调频接收机设计 主要技术指标: 工作频率?0=6. 5MH Z或10.7MH Z,输出功率P0 = 0.25w( R L = 8Ω) 灵敏度10mV 3. 调幅发射机设计 主要技术指标: 工作中心频率?0=6. 5MH Z或10.7MH Z, 发射功率P A=300mw总效率ηA> 50%调幅度m a =50% 负载R L = 51Ω, 4. 调幅接收机设计 接收信号: 载频?0=6. 5MH Z或10.7MH Z,调制信号1Khz,调幅度m a =50% 主要技术指标: 工作频率?0=6. 5MH Z或10.7MH Z,输出功率P0 =100mW( R L = 8Ω) 灵敏度20mV 5.调频与解调系统设计 主要技术指标要求:工作中心频率?0 =10MHZ或15MHZ,最大频偏Δ?max =75KHz, 调制信号1Khz, 解调输出峰峰值UOP-P ≥2V, 6.调幅与解调系统设计 调幅电路能产生AM和DSB信号, 解调电路应无失真. 主要技术指标要求:工作中心频率?0 =1MHZ 到10MHZ任选,调制信号1Khz到10KHZ任选, AM调幅度ma =50% ,载波的频率稳定度≤5 x 10 –4 /小时, 解调输出峰峰值UOP-P ≥1V 实验室已有的条件: 晶体管3DG100(3DG6)或3DG130(3DG12)9013 晶振: 2M 5M 6.5M 10.7M 10.245M 变容二极管BB910 中频变压器6.5MHz 10.7MHz 模拟乘法器MC1496 MC13135集成接收芯片LM386低功放芯片集成振荡器MC1648 锁相环NE564 二、课程设计报告格式及主要内容:(设计报告撰写要认真,不可抄袭,否则重写) 1. 设计题目及主要技术指标要求; 2. 系统总体方案设计 给出系统总体设计方案, 通过比较,确定系统各个模块的选择; 3. 各个单元电路设计 参数计算、元器件选择、电路图等; 4.电路的安装调试: 包括实际指标测试结果:数据、曲线、图表等; 对测试中的问题加以分析,说明原因,提出改进措施; 5 按国家标准画出定型电路图,PCB图(选),列出元件明细表; 6. 总结课程设计的收获及心得体会。 7. 列出参考文献

关于IIC的通信协议程序

#define uchar unsigned char #define uint unsigned int #define ulong unsigned long #define _BV(bit) (1 << (bit)) #ifndef cbi #define cbi(reg,bit) reg &= ~_BV(bit) #endif #ifndef sbi #define sbi(reg,bit) reg |= _BV(bit) #endif extern uchar dog; /* void delay_1ms(uchar xtal) { uchar i; for(i=0;i<(uint)(143*xtal-2);i++) {;} } //2 延时nms void delay_ms(uchar m, uchar fosc) { uchar i; i=0; while(i

220通讯协议说明(1)

220仪表通讯协议说明 220采用485通讯接口,执行Modbus-RTU协议,数据位8位,停止位2位,无校验。具体由参数27(通讯模式,设定为1)、参数28(机码)和参数29(波特率)设定。仪表支持02读开入命令,03读参数命令,05开关输出命令,单字节写命令和0x10多字节写命令。 1. 02读开入命令 格式:01 02 00 00 00 04 crc0 crc1 返回01 02 01 Data crc0 crc1 读取00开始的4个开入状态Data为开入状态,每个位代表一个开入 220仪表有4个输入。 2. 03读参数命令 格式:01 03 00 00 00 01 84 0A 返回01 02 02 03 04 crc0 crc1 读00开始的1个字返回2个字节0304 仪表参数地址见下面的附表。 3. 05命令 格式:01 05 00 01 ff 00 crc0 crc1 返回格式一样 05命令可以实现开关量输出控制,报警复位,恢复出厂等。具体功能见下附表。 4. 06和0x10命令 格式:01 10 00 00 00 02 04 01 02 03 04 crc0 crc1 返回01 10 00 00 00 02 crc0 crc1 修改00开始的2个字为0102 0304 01 06 00 00 01 02 CRC0 CRC1 返回一样 修改00地址参数为0102 注意仪表的参数都是有int和long型的,int型参数,每个参数占用一个地址,1个字长。Long型参数,每个参数占用2个地址,2个字的长度!

注:除了上述数据外,仪表的参数表中所有参数都可以通讯读取或者修改,所有实时数据都可以读取。

通信电子线路课程设计题目及答案(正式版)

1.请问本机振荡电路的类型并估算电路的振荡频率? 答:本振的类型为Clapp 振荡器,它是电容三端式振荡器的一种变形。振荡电路的振荡频率近似等于其选频回路的谐振频率,即: f= 2.影响振荡频率的元件有哪些? 答:如下图: 如图红色椭圆标注所示,振荡频率由这些元件决定。 3.天线信号接收选频网络的作用? 答:其作用是选频,通过可变电容选择希望听到的广播信号。 4.混频电路射极电阻的作用? 答:该电阻是用于稳定混频管静态工作点而使用的电流负反馈电阻。 5.混频电路输入输出信号波形特征? 答:混频电路有两路输入信号:天线信号,其波形是疏密相间且等幅的调频信号;本振信号,其波形是高频正弦信号。混频电路输出信号:载波为中频的调频信号,其波形特征与天线信号一致,是疏密相间且等幅的调频信号。 6.混频电路集电极选频网络的作用? 答:从混频后的信号中用该选频网络滤出中频信号。 7.中频放大电路陶瓷滤波器的作用? 答:陶瓷滤波器的作用是进一步滤出中频信号,因为陶瓷滤波器的矩形系数一般要比LC谐振回路好,即具有较好的选择性。 8.检波电路中中周的作用及选频网络的中心频率是多少? 答:该中周的作用是将信号中频率的变化转化为电压的变化。选频网络的中心频率是:

10.7MHz 9. 低频放大电路的输出是如何调整的? 答:通过调整低放输入端可变电阻实现 10. 如何保证中频放大电路的频率是10.7MHz ? 答:要保证中放的频率是10.7MHz ,我们在电路中需要注意:中放管输出端的陶瓷滤波器要选择中心频率为10.7MHz 的产品 11. 混频级与中放级电路静态计算 答:混频级和和中放级电路的直流静态工作点分析如下: 设Tr1和Tr2的直流放大倍数分别为1β、2β,基极电流、集电极电流和发射极电流分别为i Ib 、 i Ic 和i Ie ,1,2i =,总电流为I 。 根据三极管的电流放大特性有: i i i Ic Ib β= (1) (1)i i i Ie Ib β=+ (2) 设Tr1和Tr2的基极电压分别为1Vb 、2V b ,那么 1120.7Vb Ie R =+ (3) 2240.7Vb Ie R =+ (4) 此外,

相关主题