当前位置:文档之家› 红外光谱信噪比

红外光谱信噪比

翁老爷子的新书《傅里叶变换红外光谱分析》(第2版)中,有一段对红外仪器信噪比的无奈描述:“红外仪器的信噪比是衡量一台仪器性能好坏的一项非常重要的技术指标。

但是信噪比的测量方法目前没有统一的、公认的标准,因此,各个红外仪器公司所给定的仪器信噪比没有可比性。

每个红外仪器公司都有信噪比的测量方法,因此,信噪比指标的验收只能按照仪器公司的验收方法进行验收。

”看来这个“红外信噪比”真个是乱花渐欲迷人眼,让人雾里看花隔一层啊!但是zwyu我充分发挥超人的大打特打、死缠烂打、穷追猛打的精神,欲对“红外信噪比”进行一次非官方、全方位的刨根问底,追踪探秘。

各位好奇同学请跟进!正文信噪比(signal-to-noise ratio,简记为SNR ),顾名思义,就是信号值与噪声值的比,这一比值当然是越高越好。

可是,翻遍《GB/T21 186-2007 傅立叶变换红外光谱仪》,《GB/T 6040-2002 红外光谱分析方法通则》(见红外光谱相关标准与检定规程大合集)以及其他的一些行业性、地方性的检定规程(国家级的傅里叶变换红外光谱仪检定规程至今还未出台),甚至中国药典,愣是找不到关于信噪比的只言片语的定义。

信噪比指标对红外仪器性能的评判很重要,怎么会找不找呢?且慢,注意标准中屡屡提到的“基线噪声”(100%T线噪声)XXXX:1或1:XXXX,还往往标了P-P或RMS,这不就是我们熟悉的信噪比的表示方法吗?哈哈,总算找到你了。

艰难的看过标准上的描述(没办法,中国国标写的水平就是高!?),为了各位同学能够顺利读懂,我将它写为白话现代汉语版:红外信噪比,是通过基线(100%T线)噪声来表征。

也就是,在样品室中不放样品的情况下(空光路),测得一条假定理想的100%T透射光谱。

信号,当然就是100%T了,如果没有噪声,那么这条光谱将是一条严格的纵坐标为100%T的直线,但是,实际情况是噪声总是存在的,这就使得这条光谱的各个波数点上的值不见得一定是100%T,可能高一些(比如100.1%T),也可能低一些(比如9 9.9%T)。

P-P(峰-峰值)噪声的意思就是说刚才测得的那条光谱在某一段波数区间内(比如2200~2100cm-1)的最大值与最小值之差,比如说是100.1%T-99.9%T=0.2%T。

前面说了,信号是假定为100%T,那么,根据信噪比的定义,信号值/噪声值,比如100%T/0.2%T=500(注意此处单位相消,也就是说,信噪比用信号噪声比值表示的话,是一个无量纲的数)。

此时,我们可以说,这台红外光谱仪的信噪比是500:1。

换句话说,我们知道了P-P(峰-峰值)噪声,我们也就自然知道了P-P值信噪比;同理,我们知道了P-P值信噪比,比如500: 1,那么我们很自然的也能利用噪声=信号/信噪比,即100%T/500=0. 2%T,得到P-P噪声值的大小为0.2%T。

有人说,为了避免小概率事件的发生(此君是彩票迷,鉴定完毕!),噪声值应该用更具代表性和统计性的RMS(均方根值)噪声来表示。

那啥是RMS呢?我不得不祭出万恶的数学公式(霍金一部《时间简史》,只用了一个公式。

我这个小小的原创这么早就出公式了。

我不如霍金。

)设{Y1, Y2, Y3, …YN}为给定波数区间内N个连续波数点对应的纵坐标值(按照前述条件下,为一系列%T透过率值),则这些值的均值为:均方根(root mean square,简记为RMS)偏差为:如果不用公式,通俗地讲,均方根值就是一组数的平方的平均值的平方根;均方根偏差就是一组数与这组数均值之差的平方的平均值的平方根。

所以,你瞧,我早早放弃了只用文字叙述,还是看看万恶的公式吧。

显然,用上式求得的一条光谱在某波数(横坐标)区间内全部N个数据点纵坐标值的均方根偏差就作为了RMS噪声的度量。

一般对红外光谱来讲,P-P(峰-峰值)噪声会比RMS(均方根值)噪声大5倍左右,换句话说,RMS噪声的绝对数值更小,换算成信噪比时就更大,所以你发现用RMS值表示的信噪比往往看起来都很漂亮也就不奇怪了,因为它比P-P值表示的信噪比大了5倍(而且,显然参与运算的波数点越多,这一倍数还会增加)。

上面的“基线噪声”都是用了100%T基线,对应的是透射光谱的透过率表示形式;国际上越来越多的地方采用透射光谱的吸光度表示形式,此时的“基线”自然变成了0A基线。

该“零基线”上的噪声单位,显然也就变成了A(吸光度单位,有时写做AU)。

此时,计算P-P 噪声和RMS噪声的方法与前面完全一样。

但是,因为这些基线都是在样品室中不放样品的情况下(空光路)测得的,所以此时的信号应该是0A,如果直接计算信噪比的话,0/噪声=0,显然得不到明确的有意义数值。

所以有很多同学这个地方就会糊涂了,由吸光度表示的基线噪声值,怎么得到信噪比?在此,zwyu独家奉献推导过程(呵呵,反正市面上所有的资料里都没写,可能觉得太简单了吧。

):前面讲到,因为测量吸光度基线噪声时,假定的信号就是0A(相当于没有信号),导致所有的计算归零。

那么,绕开这一“归零窘境”的关键就是不用0A,而采用等效的100%T,因为前面用100%T基线噪声时计算信噪比已经证明是行得通的。

所以,要做的工作就是将0 A基线时的噪声等效为100%T基线时的噪声。

由吸光度与透射率之间的转换关系:设此时信号为1(即100%),考虑到将A坐标下的噪声A-0转换到% T坐标下的噪声1-T(为简化起见,将100%记为1,T则不再乘100),则根据信噪比SNR的定义,这里的A就是0A基线下给出的基线噪声值(如果你怕将它和吸光度单位A混淆,请自行将公式中的变量A换为任意字母代替)。

后面我会结合实例,验证我这一推导公式。

显然A值越小,得到的信噪比越大,也就是说基线噪声值越小越好,这也与我们的认知相一致。

同样,已知信噪比的情况下,我们也能够很容易的推出此时用AU表示的基线噪声值,如下式:好了,看到这儿,应该掌握的理论武器想必大家都基本掌握了。

那就让咱们来看看当前主流红外光谱仪器厂家的仪器和厂家给出的信噪比。

Thermo/Nicolet公司2008年推出的iS10PE公司2005年推出的Spectrum 100Agilent/Varian公司2008年推出的640-IRBruker公司2002年推出的TENSOR 37Shimadzu公司2007年推出的IRPrestige-21作为对比,我这里也给出国产红外光谱仪的相关资料(由于天津拓普的FTIR 920我实在找不到技术指标,而且销量很小,本文暂略去不谈)北京瑞利的WQF-510天津港东的FTIR-650看罢这粉墨登场的诸多款红外光谱仪和它们的参数,我不知道诸位同学晕了吗?反正,如本文开头所述,玩了一辈子红外光谱的翁老爷子晕了。

老爷子之所以会晕的原因,不是他老人家红外经验少,更不是看的不认真,而是——各个标准之间,各个红外厂商的宣传资料之间,对红外信噪比实际测量时的诸多具体参数设置,根本不一致(用翁老爷子的原话就是“测定的条件不相同”)。

或许,“因编者水平有限,难免会出现一些错误和疏漏”;或许,本来就是有人希望搞出这种不一致来以混淆视听;或许,家家有本难念的经。

总之,苦了各位同学了。

先抛开这些让人纠结的具体参数,只看最终的结果。

我们很容易发现,红外厂商之间最通用的信噪比表示方法一般有两种:5S(秒钟)P-P 值信噪比和1Min(分钟)P-P值信噪比,但也有只给出了5S P-P值信噪比(如Varian)或只给出了1Min P-P值信噪比(如Shimadzu)的例外。

为了统一起见,需要知道5S和1Min P-P值信噪比之间的换算关系。

在这里,提前谈一下扫描时间(在实际参数设置时,更直接的说,是扫描次数)这一参数对红外信噪比的影响。

因为测量红外光谱时,检测器噪声占了总噪声的主要部分,而检测器噪声又与信号水平不成正比,或者说是噪声是随机的且与信号电平无关。

那么,我们很容易想到通过多次测量求均值的办法来提高信噪比。

而从数学上可以证明,n次测量平均的结果是信噪比可以提高到1次测量的倍。

比如,4次叠加平均信噪比提高2倍,16次叠加平均信噪比提高4倍,32次叠加平均信噪比提高5.6倍,64次叠加平均信噪比提高8倍,128次叠加平均信噪比提高11.3倍。

我们一般在使用红外光谱仪(F TIR)进行测量时,常选的叠加平均次数是16或32,这也是因为此时能达到最经济的效能。

次数过少,信噪比提高的有限;次数过多,测量时间会很长,反而得不偿失。

而且注意这里说的是FTIR,对于光栅红外来讲,扫一次全谱甚至需要几到几十分钟的时间,现代的实验人员不会疯狂到叠加平均多次从而花掉一天的时间来得到一张光谱。

而对FTIR来说,扫一次全谱花掉的时间只有1S左右,完全可以多次扫描叠加平均来有效的提高信噪比。

那么,问题来了,1Min 扫描相比5S扫描,多扫了多少次呢?或者说,1Min扫描,红外光谱仪内部叠加扫描了多少次,5S扫描,又是叠加多少次呢?幸运的是,前述各厂家给出信噪比指标的时候,都使用的是分辨率为4cm-1时的数据,也就是说,此时扫描时间和扫描次数基本上成一个简单的正比关系。

5S:60S=1:12,可以简单的认为,1Min扫描的次数是5S扫描次数的12倍,套用前面给出的关系,也就是说,预期信噪比可以提高3.5倍。

让我们来看一下这两个信噪比数据都给出了的厂家提供的数据:Thermo/Nicolet公司的iS10:1Min P-P值信噪比:5S P-P值信噪比= 35000:10000=3.5,完全符合我们的推论。

PE公司的Spectrum 100 :1Min P-P值信噪比:5S P-P值信噪比=3 6000:10500=3.4,基本符合。

Bruker公司的TENSOR 37:1Min P-P值信噪比:5S P-P值信噪比=4 5000:8000=5.6,与我们的预期值偏差较大。

我们注意到这两个数据B ruker公司将它标为了“可达”,而不是“最少”(标为“最少”的,只有5 S P-P值信噪比=6000:1这一个数据)。

换句话说,1Min扫描信噪比能够比5S扫描提高5.6倍,这只是可能发生的最好情况,而不是一定保证的数据。

由于我们前面给出的“n次测量平均的结果是信噪比可以提高到1次测量的倍”这一结论已经是理想情况下的数值了,实际情况可能还达不到这一效果,那么,Bruker公司的提高5.6倍,远超理论上限值3.5倍的数据,又是怎么来的呢?这就又不得不提到一个扫描速度的问题。

前面说过,现代的FTIR扫一次全谱(40 00~400cm-1)花掉的时间只有1S左右,当然,它有“左”也有“右”了。

如果扫描一次正好需要1S时间,那么,5S内,光谱仪共扫了5次,1Min内,共扫了60次,这就是我们前面用到的数据。

相关主题