当前位置:文档之家› 金属液态成型第二章 液态金属的流动与传热

金属液态成型第二章 液态金属的流动与传热


一、浮力流
一维简化模型 左边为一温 度 的无限大热 板,右边为一温 度 的无限大冷 板,两板中的液 体由于温差而产 生对流。
GT
称之为格拉索夫(Grashof)数,为一无量 纲常数,其数值大小表示由于温度差引起的 对流的强弱.
二、 枝晶间中液体的流动
模型: 将其作为多孔介质处理,假设凝固过程 中枝晶的间隙不变,且枝晶间隙为平直光滑 的通道; 设在一个长度为 的圆柱体内,有很多 个半径为 的微小孔道,因此引用圆管中液体 的流动规律,即在每个圆管中,横断面上任 一点的轴向切应力 可以表示为:
2.2 液态金属的充型能力
充型能力的基本概念; 流动性的测定; 液态金属停止流动的机理; 液态充型能力的理论计算; 影响充型能力的因素;
一、充型能力的基本概念
液态金属充满铸型型腔,获得形状完整、轮 廓清晰的铸件的能力,称为液态金属的充型能 力; 液态金属本身的流动能力,称为“流动性”; 液态金属的充型能力首先取决于金属本身的 流动能力,同时又受外界条件,如铸型性质、 浇注条件,铸件结构等因素的影响。 注意“充型能力”与“流动性”的区别与联系!
4. 铸件结构方面的因素 衡量铸件结构特点的因素是铸件的折算厚度 (也称为当量厚度、模数)和复杂程度; 铸件的壁越薄,折算厚度就越小,就越不容 易被充满; 另一方面,铸件结构复杂、厚薄部分过渡面 多,则型腔结构复杂,流动阻力大,铸型的充 填就困难。
2.3 液态成型中金属的流动
凝固过程中的液体流动主要包括自然对流、强迫 对流及亚传输过程中引起的流动。 自然对流是由密度差或凝固收缩引起的流动,其 中由密度差引起的称之为浮力流。 强迫对流是由液态受到各种外力场(如机械搅拌、 电磁场、超声波作用场等)的作用而产生的流动 液体。
2.1.1 导热的基本方程及求解
基本思路
热传导是其热量传递的主要形式。通常若需考虑凝固过 程中的对流换热及辐射换热时,可将这两种传热形式以 边界条件的形式在导热方程中进行求解; 铸件在铸型中的凝固和冷却过程是非常复杂的→简化
1. 导热基本方程的建立
当不考虑内热源,并采用立方坐标系时,傅里叶定 律可表示为:
2. 金属-铸型界面热阻为 主的金属型中凝固
较薄的铸件在工作表面涂有 涂料的金属型中铸造; 传热过程取决于涂料层的热 物理性质
3. 厚壁金属型中的凝固
铸件在工作表面涂有很薄涂 料的金属型中铸造时; 金属-铸型界面的热阻相对很 小,可忽略不计; 可以认为,厚壁金属型中的 凝固传热为两个相连接的半 无限大物体的传热,整个系 统的传热过程取决于铸件和 铸型的热物理性质
2)充型压头 液态金属在流动方向上所受的压力越大, 充型能力就越好; 在生产中,用增加金属液静压头的方法提高 充型能力,也是经常采取的工艺措施; 用其它方式外加压力,如压铸、低压铸造、 真空吸铸等; 但是充型时压力过高,充型速度过快,也会 导致液态金属进入型腔时呈喷射或飞溅状态, 极易造成金属的氧化、吸气等现象。
解释?
3)合金材料的比热容、密度和导热系数等 比热容、密度 较大的合金因其自身含有较多的热 量,在相同的过热度的情况下,保持液态的时间长, 流动性好;导热系数小的合金,热量散失慢;导热系 数小,在凝固期间液固并存的两相区小,流动阻力 小,故流动性较好; 4)粘度 对紊流的影响较小,对流动性影响不大;只 在充型的最后很短时间内,由于通道截面缩小,或液 流中出现液固混合物,在温度下降时对流动性才表现 出较大的负面影响; 5)表面张力:附加压头h。 提高流动性的工艺措施:正确选择合金成分 合理的熔炼工艺 “精炼去气”、“高温出炉、低温浇注”
3)浇注系统的结构 浇注系统越复杂,流动阻力越大,在静压头 相同的情况下,充型能力就越差。 对于砂型铸造来讲,灰铸铁由于其流动性 好,其浇注系统往往结构较复杂,能起到较好的 缓流作用,从而有利于阻渣、去气; 而对于铸钢,特别对于某些薄壁复杂件,其 浇注系统结构尽可能简单且流程短,以保证其充 型能力。
一维空间流动速度与压力场之间的关系
三维空间流动速度与压力场之间的关系-达西(Darcy)定律:
三、界面张力引起的流动
在一特定的系统中,界面张力受温度与溶质浓度的影响:
Marangoni数 当温度或浓度梯度垂直于凹曲的液面,此时势必产生一 个界面张力梯度,当达到Marangoni数的临界值时,将引起 流动,这种流动也称之为Marangoni对流。
金属型 砂型
体积凝固
中间或层状凝固
砂型中:
低碳钢:层状凝固 中碳钢:中间凝固 高碳钢:体积凝固
2.1.6 凝固时间
1. 理论推导 (无限大平板)
很大局限性,仅作为近似计算,实际应用较少
2. 平方根定律
应用:大平板类零件比较准确
3. 折算厚度法则(模数法)
R又称为“模数”
应用:一般铸件的凝固时间(非大平面类零件仍有一定误差)
2. 铸型性质方面的因素 1)铸型的蓄热系数 蓄热系数含义:表示铸型从其中的金属中 吸取并储存于本身中热量的能力; 蓄热系数越大,铸型的激冷能力就越强。
2)铸型的温度 预热铸型能减小金属与铸型的温差,从 而提高其充型能力。例如,在金属型中浇注 铝合金铸件,将铸型温度由340℃提高到 520℃,在相同的浇注温度(760℃)下,螺 旋线长度则由525mm增加到950mm。在熔 模铸造中,为得到清晰的铸件轮廓,可将型 壳焙烧到800℃以上进行浇注。
4. 水冷金属型中的凝固
凝固传热的主要热阻是凝 固金属的热阻,铸件中有 较大的温度梯度
2.1.4 动态凝固曲线
1. 温度场测定
2. 温度场曲线绘制
3. 动态凝固曲线绘制 液相边界 固相边界
2.1.5 金属的凝固特性
1. 凝固区域及其结构模型 3个区域 4个边界
2. 铸件的凝固方式 凝固方式取决于凝固区域的宽 度; 3种凝固方式/凝固特征; 逐层凝固方式 体积凝固方式(或称糊状凝 固方式) 中间凝固方式
第二章 液态金属的流动 与传热
[导入案例]
美国、德国和日本等国家的先进铸造企业较早将工艺过程的模拟技术广 泛应用于铸造生产实际,以实现优化设计及缩短生产周期。目前国内也有 越来越多的企业利用模拟技术来实现生产工艺的设计及优化。
2.1 液态成型过程的传热
研究意义 研究方法
实测法 数学解析法 物理模拟法 数值模拟法
第三类边界条件(也称Robin条件),即给出物体边界 上各点的温度与温度沿边界法向导数的组合:
实际液态金属成型需要考虑对流、辐射换热时, 及考虑热阻情况下,可归为此类边界条件。
3. 一维半无限大铸件温度场的解析解
先假设: a.具有一个平面的半无限大铸 件在半无限大的铸型; b.铸件和铸型的材料是均质的, 其热扩散率为定值; c.铸型、铸件的初始温度已知; d.充型后各处温度均匀; e.将坐标的原点设在铸件与铸型 的接触面上。
基本公式:
五、 影响充型能力的因素
1. 金属性质
1)合金成分
对多元合金体系中,对应着纯金属、共晶 成分和金属间化合物的成分点的流动性最好; 并随结晶温度范围的扩大而降低,在结晶温度 范围最大点出现极小值。
2)结晶潜热
对纯金属和共晶成分的合金在固定温度下 凝固,释放的结晶潜热越多,则凝固越缓慢, 流动性越好; 对于结晶范围较大金属:大部分结晶潜热 尚未释放,液体已停止流动,因此结晶潜热对 液体流动性影响不大。但存在例外情况:例如 铝-硅合金,初生相为块状,不形成网络,液固 混合态能在液相线下流动,结晶潜热得以发挥。
∂ 2t ∂ 2t ∂ 2t ∇ 2t = 2 + 2 + 2 ∂x ∂y ∂z
2. 导热微分方程的单值条件
第一类边界条件(也称Dirichlet条件),即给出物体 边界上各点的温度值,数学表达如下。
实际上,已知边界处的温度值或温度分布函数可 归于此类边界条件。
第二类边界条件(也称Neumann条件),即给出物体 边界上各点温度沿边界法向的导数,数学表达式
3)铸型中的气体
铸型有一定的发气能力, 能在金属液与铸型之间形成 气膜,可减小流动的摩擦阻 力,有利于充型。 但铸型发气性太大会导致 型腔气体反压增大,充型能 力下降。 减少气体反压的途径?
3. 浇注条件方面的因素
1)浇注温度 浇注温度越高,充型能力越好; 但随着浇注温度的提高,铸件一次结晶组 织粗大,容易产生缩孔、缩松、粘砂、裂纹等 缺陷。
基本思想
求解物体内温度随空间、时间连续分布的问题,转化为空间 领域与时间领域的有限个离散点上求温度值的问题,并进而 用这些离散点上的温度值去逼近连续的温度分布
2.1.3不同界面热阻条件下温度场的特点
1. 铸件在绝热铸型中凝固
砂型、石膏型、陶瓷型、熔模 铸造等铸型材料 在凝固传热中,金属铸件的温 度梯度比铸型中的温度梯度小 得多; 绝热铸型本身的热物理性质是 决定整个系统传热过程的主要 因素;
逐层凝固方式示意图
糊状(体积)凝固方式示意图
恒温下结晶
结晶温度范围很小 或断面温度梯度很大
铸件断面温度场 较平坦
结晶温度 范围很宽
3. 铸件的凝固方式的影响因素
合金的结晶温度范围Δt; 温度梯度δt。 Δt/ δt依据: Δt/ δt << 1 趋于逐层凝固方式;Δt/ δt > 1 趋于体积凝固方 式。
⎛ ∂ 2t ∂ 2t ∂ 2t ⎞ ∂t ρc p = λ⎜ 2 + 2 + 2 ⎟ ⎜ ∂x ∂y ∂z ⎟ ∂τ ⎠ ⎝
形式可改写为:
⎛ ∂ 2t ∂ 2t ∂ 2t ⎞ ∂t = α⎜ 2 + 2 + 2 ⎟ ⎜ ∂x ∂y ∂z ⎟ ∂τ ⎝ ⎠
λ α= cρ
∂t = α∇ 2 t ∂τ
二、流动性的测定
流动性试样种类: 螺旋形试样 真空试样
三、 液态金属停止流动的机理
1. 纯金属、共晶合金或窄结晶温度范围合金
相关主题