当前位置:文档之家› 双目立体视觉

双目立体视觉


上述公相对于所有 标定点重心的,空间坐标。这个方程可以用SVD 方法求其最小二乘解。然后解下面方程求得T。
其中 P 分别代表标定点在前后帧的,所有标定 点重心的空间坐标。
五 检测实例展示
扫描一个长方体块的上表面
扫描长方体铁块光滑的上表面的效果图 散点图 曲面重建图
4 电影特效制作与动漫建模
5 3D打印前期模型输入
二 设备组成
工作原理图
(1)相对位置固定 的CCD两个 (2)线结构光发射 器一个 (3)标定点若干
实物图片
三 工作原理及算法流程
双目视觉测量原理:
如图所示,假设空间中一点P在左、右相机中成像位置 分别为pl(ul,vl)和pr(ur,vr),且两相机坐标系间存在刚性 变换关系R、T。
左目处理结果 右目处理结果
4.对左目的图像进行二值化处理,选取亮度为255的点,然后选 取被测物体上的光线的轮廓,以得到光线在被测物体上的像素坐 标,并根据事先标定好的光平面在左目相机坐标系中的方程 Z=A*X+B*Y+C,计算物体上被结构光打到的点,在当前左目相机 坐标系下,的空间坐标。
二值化处理结果 物体上的光线轮廓
自定位技术的实现原理:
(2)旋转矩阵R和平移矩阵T的计算 当我们得到了准确的相邻两帧图像对应的标定点的准确的运动信息 之后,我们需要求解两个坐标系之间的刚体变换关系才能将数据统一对齐 到一个坐标系中, 若我们得到了n对对应的标定点坐标,我们可以将其关系表示成如下 形式:
其中p分别代表标定点在前后帧的空间坐标,R和T代表两个坐标系之间的 最优刚体变换关系,N为测量噪声。
记P点在左右相机坐标系下坐标分别(xl,yl,zl),(xr,yr,zr,)根据小 孔成像模型
又根据左右目相机位置变换关系:
七个方程 6个未知数,线性方程组可解,可得 P在左目 由此可计算出特征点 P在左相机坐标系下的三维坐标为: 相机的相机坐标系下的坐标(xl,yl,zl)
其中A=(ur-crx)/frx,B=(vr-cry)/fry,C =(ul-clx)/flx, D =(vl-cly)/fly;frx,fry,flx,fly分别为左右相机的归一化焦 距,(clx,cly),(crx,cry)分别为左右相机图像中心像素坐标。 因此,左相机像面上的任意一点只要能在右相机像面上找到 对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全 的点对点运算,像面上所有点只要存在相应的匹配点,就可以参 与上述运算,从而获取其对应的三维坐标。
双目立体视觉
一 双目视觉简介
双目立体视觉(Binocular Stereo Vision)是今年几
何量测量研究中的重要领域,以测量物体的三维轮廓数
据为目的,主要包括数据测量与数据后处理两部分,伴 随着光电传感器件以及计算机视觉领域的日趋成熟,双 目视觉技术应用领域不断拓展,目前主要应用于: 1 航空航天、汽车、船舶、模具等工业制品的逆向设计 2 产品质量检测 3 生物医学3D建模
双目视觉程序算法流程:
1.导入第一帧左右目图像 左目图像 右目图像
2.运用canny算法处理图像
左目处理结果 右目处理结果
3.筛选标定点,并利用“极限约束条件匹配”,然后利用双目视 觉原理计算标定点的立体坐标,以后相邻两幅图像的立体标定点 的坐标为以后计算相邻两帧图像的坐标系的变换关系,以便实现 自定位的目的做准备。
5.重复上述步骤,但处理第2帧到第n帧图像时,需要利用标定点的空间 坐标,计算得到当前左目相机坐标系与第一帧左目相机坐标系之间的变 换关系,然后将当前帧处理得到的物体上的点的坐标转化到第一帧左目 相机坐标下的三维坐标。
四 关键技术(自定位原理)
自定位技术的实现原理:
(1)标定点的精准匹配
标定点匹配时,如果仅仅利用极限约束条件,往往会出现左 目中的一个标定点在右目中会有多个标定点满足约束条件! 这时我们首先对所有的情况都把立体坐标计算出来,扫描图 像时,相邻两帧图像之间运动很小,我们可以近似看作是平移运 动,所以正确的标定点的位移一定是近似相等的,以此来排除进 入约束条件的错误的标定点。
扫描一个碗的侧面
扫描碗的侧面的效果图 散点图 曲面重建图
相关主题