Brouwer不动点定理的几种证明学院名称:专业名称:学生姓名:指导教师:二○一一年五月摘要Brouwer不动点定理是很著名的定理.其中,关于它的证明很多有:代数拓扑的证明、组合拓扑的证明、微分拓扑的证明等.都涉及拓扑学上许多复杂的概念和结果.关于该定理,也可以用图论的方法证明,用离散离散理论解决连续系统中问题.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍来体现这一思想.关键词:Brouwer;不动点.ABSTRACTBrouwer fixed point theorem is very famous theorem . Among them , about its proof many : algebra topologies, proof of the proof, differential combined topology etc. The proof of topological Involves many complex on the concept of limited and results.About this theorem, also can use graph method to prove, in a discrete discrete theory in solving continuous system. This article tries to summarize the other proof method based on the method of graph theory prove Brouwer fixed point theorem for detailed introduction to reflect this thought.Keywords: Brouwer; Fixed point.目录第一章引言 (1)1.1 研究背景 (1)1.2 本课题的研究内容 (1)第二章 Brouwer不动点定理的证明 (2)2.1 Brouwer不动点定理的图论证明 (2)引理2.1.1(sperner,1982) (3)定理2.1.2 (Brouwer) (3)2.2 Brouwer不动点定理的初等证明 (5)2.2.1 基本概念与引理 (5)定理2.2.2.1(Banach不动点定理) (5)定理2.2.2.2(KKM定理) (5)2.2.3 Brouwer不动点定理的证明 (7)定理2.2.3.2 (FKKM定理) (7)定理2.2.3.5(Brouwer不动点定理) (8)2.3 Brouwer不动点定理的nor分析证明 (9)2.3.6 Brouwer不动点定理 (18)参考文献 (19)致谢 (20)第一章引言1.1 研究背景Brouwer不动点定理是非线性分析和拓扑学中的重要基本定理,它的叙述简洁,应用广泛,但证明却很不简单.不论是代数拓扑的证明[1],还是组合拓扑的证明[2],以及微分拓扑的证明[3],都涉及拓扑学上许多复杂的概念和结果.1978年著名的微分拓扑学家nor给出了一中新证明[4],只用到多变量微分学的知识和某些基本分析定理.关于该定理,也可以用图论的方法证明,这种离散理论解决连续系统中问题的思想,对我们也给了很大的启示.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍.1.2 本课题的研究内容整理Brouwer不动点定理的初等、图论方面的证明和nor给出的用多变量微分学和某些基本分析定理的新证明.详细介绍Brouwer不动点定理的图论方法证明,体现离散理论解决连续系统中问题的思想.12第二章 Brouwer 不动点定理的证明2.1 Brouwer 不动点定理的图论证明Brouwer 不动点定理:若2∆表示平面上一个三角形区域围成的闭区域,f 是2∆到自身的连续映射,则f 至少有一个不动点,即存在一点20p ∈∆,使得00()f p p =.首先把2∆剖分成若干小三角形区域,即221mi i δ=∆=,221,nij i ji j mδδ≠≤≤的面积为零.把2∆的三个顶点分别标志位0,1,2.每个2i δ的顶也用{0,1,2}中的数标志.若2i δ的顶i p 在2∆上的边上,且2∆的这条边端点之标号为k 与m ,2i δ的顶也标成k 与m ,称这些标志位正常标志,在正常标志中小三角形2i δ的三顶分别标志0,1,2时,称2i δ为正常三角形,见图a.2∆的这种标志的剖分称为三角剖分.1图2.1v v 1v 59v 10v 11图 2.23引理2.1.1(sperner ,1982)在2∆的三角剖分中,正常三角形为奇数个.证:记20δ为2∆的外部区域,22212,,...,m δδδ是2∆进行三角剖分得到三角形子区域.以{}22212,,...,m δδδ为顶集造一个图G ,对于i 与j 接非零的情形,仅当2i δ与2j δ有公共边具此边端点标志为0与1时,才在此二顶间连一边,对20δ与2(0)i i δ≠的情形,仅当2i δ的0-1标志的边落在2∆的0-1标志的边上时,在顶20δ与2i δ间连一边,见图b.由于上述图G 中奇次项的个数是偶数,如果20()d δ是奇数,则22212(),(),...,()m d d d δδδ中奇数个奇次项,又2()3,1,2,...,i d i m δ<=.故22212,,...,m δδδ中的奇次项是一次项.而仅当2i δ是正常三角形时,2()1i d δ=,所以正常三角形有奇数个.下证20()d δ是奇数.事实上,20()d δ是2∆上0-1边上以0与1为端点的小区间的个数.当的这条0-1边之内点为任何小三角形之顶时,,是奇数.当的这条边内有小三角形之顶时,由于标志是正常的,的则这种小三角形在的这条0-1边上之端点标志位0或1.这时又有两种情况,(i )在这条0-1边上的小三角形顶皆标志0或皆标志1,则,(ii )在2∆这条0-1边上的小三角形之顶点标0与标1都有时,我们把端点标号一样的小区间收缩成一点,标号不变,则f 的这条0-1边上的标号序列为0-1交错列010101…01,这里出现奇数个以0,1为端点的小区间,故20()d δ为奇数.证毕. 定理2.1.2 (Brouwer)f 是2∆到自己的连续映射,则存在'20p ∈∆,使''00()f p p =. 证:012,,p p p 是2∆的三个顶点,则对任意2p ∈∆,可以写成001122p a p a p a p =++,则0i a ≥,21i i a ==∑,其中的012,,,p p p p 是二维向量,且012(,,)p a a a =,'''012()(,,)f p a a a =.令{}2'012012(,,)|(,,),,0,1,2i i i S a a a a a a a a i =∈∆≥=.如果能证出 012S S S φ≠,则存在012012(,,)a a a S S S ∈,且',0,1,2ii a a i ≤=;又22'1ii i i a a ====∑∑,故必有'''001122,,a a a a a a ===,即f 有不动点. 下证2i i S φ=≠.事实上,考虑2∆的正常标志的三角形剖分,使得标志i 的每个顶点属于,0,1,2i S i =.2∆上任意一点'''012012(,,),()(,,)p a a a f p a a a ==时,存在一个i S ,使i p S ∈,且0i a >;否则当每个0i a >时,'ii a a >.于是22'0i i i i a a ==>∑∑,矛盾.若一个三4角形顶点i p S ∈且0i a >时,p 标志以i ,这种标志是正常标志,例如2∆的顶点(0,1,2)i p i =有1i a =,故i i p S ∈,标成i ;在2∆的01p p 边上各点的20a =,我们只能把这边上的点标以0或1;02p p 边上的点同理只能标志0或2;12p p 上的点只能标志1或2,故正常标志.由引理知,至少有一个正常三角形,其中顶点分别属于012,,S S S .我们是剖分无限变密,且小三角形中的最大直径足够小,则有分别在012,,S S S 中的三个点,两两相距可以任意小,又f 是连续的,故012,,S S S 是闭集.于是,012S S S φ≠.证毕.52.2 Brouwer 不动点定理的初等证明2.2.1 基本概念与引理定义2.2.1.1 设E 是一线性空间,其一切子集构成的集族记为2E .子集A E ⊂称为有限闭的,若它与每一有限维平面L E ⊂的交按L 上的Eucild 拓扑是闭的;一个集族{}A λλσ∈称为有限交性质,如果它的每一有限子集的交不空.定义2.2.1.2 设E 是一线性空间,X 是E 上的任意子集,称:2E G X →是一个KKM 映像,如果对任何有限子集{}12,,...mx x xX ⊂,有:{}121,,...()m mi i x x x G x =∞⊂引理2.2.1.3 设集合n X R ⊂非空,则距离函数()inf y Xd x x y ∈=-是Lipschitz 的,即有:()()d x d y x y -≤- ,n x y R ∀∈2.2.2 利用Banach 不动点定理证明KKM 定理 定理2.2.2.1(Banach 不动点定理)有限维空间中有界闭凸集上的连续自映射必有不动点. 定理2.2.2.2(KKM 定理)设E 是一线性空间,X 是E 的子集,:2E G X →是一KKM 映像.如果对于任何x X ∈,()G x 是有限闭的,则集族{}()|G x x X ∈具有有限交性质.证: 反证法.假设存在{}12,,...mx x xX ⊂使得1()m i i G x φ==.设L 是由{}12,,...mx x x 张成的有限维平面,d 是上的Eucild 的度量.令{}12,,...mD co x x x =,则D L ⊂.由假定每个1,2,...,()i i m L G x =在L 中闭,故(,())0i d x L G x =的充分必要条件是()i x LG x ∈.定义函数: 1()(,())mi i x d x L G x λ==∑由于1()mii G x φ==,故对于每一x D ∈,()0x λ>.由引理1知:6()()x y n x y λλ-≤- ,x y D ∀∈不妨设D 包含原点,否则用11m ii D x m =-∑代替D 即可.令:11()(,())()mi i i f x d x L G x x t x λ==∑ x D ∀∈ 式中,1t >是待定参数.则:f D D →连续,且对任意,x y D ∈,有:1111()()(,())(,())()()mmiii i i i f y f x d y L G x x d x L G x x t y t x λλ==-≤-∑∑1111(,())(,())()()m miii i i i d y LG x x d x LG x x t y t y λλ==≤-∑∑1111(,())(,())()()mmiii i i i d x LG x x d x LG x x t y t x λλ==+-∑∑下面对式(3)右端两项分别进行估计.首先由引理1.对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d y L G x x d x LG x x t y t y λλ==-∑∑11()()mi i x x y t y λ=≤-∑ 其次根据式(2),对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d x L G x x d x L G x x t y t x λλ==-∑∑11(,())()()()()mi i i d x L G x x x y t x y λλλλ=≤-∑1((,()))()()mi i i n d x L G x x x y t x y λλ=≤-∑综合式(3)、(4)、(5)知:(,)()()h x y f y f x x y t-≤-7式中,111(,)(,())()()()m mi i i i i nh x y x d x L G x x y x y λλλ===+∑∑.在有界闭集D D⨯上连续,因此有最大值M .取足够大的{}max ,1t M ≥,则,f 构成D 上的一个压缩映射.由Banach 不动点定理知道,,有一不动点x D ∈.令{}{}|(,())0,1,2,...i I i d x LG x i m -=>∈则()ii Ix G x -∈∉.另外:11()(,())()m i i i x f x d x L G x x t x λ---===∑{}1(,())|()()i i i i i Ii Id x LG x x x i I G x t x λ--∈∈=∈∞∈⊂∑导致了矛盾.故定理2成立.2.2.3 Brouwer 不动点定理的证明引理2.2.3.1 设集族{}A λλσ∈是n R 中的非空闭集合,其中一个有界,具有有限交性质,则该集族看非空交.证明:反证法.假设A λλσφ∈=,则它的余集为全空间,即()n CA C A R λλλσλσ∈∈==即开集CA λ.的并覆盖全空间,当然也覆盖集族中的有界闭集.由有限覆盖定理知,存在有限个开集12,,...,m CA CA CA .覆盖住0A ,即:012m A CA CA CA ⊂从而:012m CA A A A ⊃,即:012()m A A A A φ= 这与假设相矛盾,从而引理2成立.定理2.2.3.2 (FKKM 定理)设X 是n R 中的非空紧凸集,:n G X R →是闭值的KKM 映射,且存在一点0x 使0()G x 有界,则集族{}()|G x x X ∈有非空交.证明 :根据定理2知集族{}()|G x x X ∈具有有限交性质,于是根据引理2知定理3成立.引理2.2.3.3. 设X 是n R 中的非空紧凸集,映射:n G X R →连续,则至少存8在一点y X -∈使得:()inf ()x Xy G y x G y ---∈-=-引理2.2.3.4. 设X 是n R 中的非空紧凸集,映射:n G X R →连续.若对于X 中每一满足()x G x ≠的点x ,连结x 和()G x 的线段[],()x G x 至少包含X 中2点.则G 在X 中有不动点.定理2.2.3.5(Brouwer 不动点定理)设:n n G D R R ⊂→是闭集D 上的压缩映像,()G D D ⊂,则对任意0x D ∈,迭代序列:1()k k x G x += 0,1,...k =存在唯一的极限点.证明:由引理2.2.3.3,2.2.3.4可知Brouwer 不动点定理2.2.3.5成立.92.3 Brouwer 不动点定理的nor 分析证明2.3.1 考虑所有实数n 元组的集合1{{,...,}|(1)}n n i E x x x x i n ==≤≤是实数,在n E 上引进三种线性运算之后,{,,,,}n n R E =+⋅<>就称为n 维欧式空间,其中1(,...,)n x x x =称为n R 的点或向量,诸i x 称为点x 的坐标或向量x 的分量;向量(,...,)i n x x x =和(,...,)i n y y y =相加,结果是一个向量,定义为11(,...,)n n x y x y x y +=++ 实数α和向量x 相乘,结果是一个向量,定义为1,...,)(n x x x ααα=向量x 和y 的内积是一个实数,定义为 1,ni ii x y x y =〈〉=∑于是,向量的长度定义为x ==向量x 和y 的之间的距离就是x y -=由于对任何α有2,,2,,0x y x y x x x y y y αααα〈++〉=〈〉+〈〉+〈〉≥ 所以判别式2,,,0x y x x y y 〈〉-〈〉〈〉≤ 即是对任何x 和y n R ∈有Canchy By -∏不等式 |,|x y x y 〈〉≤⋅10等式成立的充要条件是:相差一个常数因子.因此我们可以定义的夹角,x y 〈〉︿的余弦为cos ,x y 〈〉︿,x y x y〈〉⋅=显然,,cos x y 〈〉≤︿1||;x 和y 相差正数因子时,,cos x y 〈〉≤︿1|;相差负数因子时,,cos x y 〈〉=-︿1||;此外由于222,x y x y x y -=+-〈〉222,cos x y x y x y +-〈〉⋅︿=2与通常的余弦定律一致,所以,cos x y 〈〉︿的定义是合理的.从而,向量x 和y 正交定义为, ,x y 〈〉︿=0.向量x 可以用从原点到点x 的有向线段来表示,也可以平行移动到任何位置,只依赖于方向和长度.因此,在图示中,两个向量相加可以用平行四边形法则,也可以用三角形法则.图 2.3(a) 图 2.3(b)2.3.2 命*I 是n R 中的一个区域.如果对任何向量*x I ∈,都相应的地有一个向量()n y x R ∈,就说y 是把*I 映入n R 的一个映像(变换).如果()y x 的诸分量1(,...,)(1)i n y x x i n ≤≤是1(,...,)n x x 的连续函数,就说y 是连续向量场.注意,在说到连续可微时,总是指函数对各个变元的一阶偏导数在包含*I 的一个n 维开领域中处处存在且连续.引理2.3.2.1 命*I 是有界闭域,v 是*I 上的连续可微向量场.于是存在Lipchitz 常数c ,使得*()(),,v x v y c x y x y I -≤-∈证明,由于v 是*I 上的连续,所以对任何*I ξ∈,存在()0δξ>,使得v 在方体 (,()){|||()(1)}n i i I x R x i n ξδξξδξ=∈-<≤≤11处处连续可微,命 *(,())sup ||iij x I jI v c x ξδξξ∈∈∂=∂ 于是,根据微分中值定理,对任何,(,())x y I ξδξ∈有22()()|(,...,)(,...,)|i n i n iv x v y v x x v y y -≤-∑1222{|(,...,)(,,...,)|i n i n iv x x x v y x x ≤-+∑1212|(,...,)(,,...,)|i n i n v y x x v y y x -+ .........1212|(,...,)(,,...,)|}i n i n v y y x v y x x -,,||ij i i ij i ji jc x y c x y ≤-≤-∑∑今证存在0δ>,不依赖于*I ξ∈,使得对任何,(,())x y I ξδξ∈,上述吧不等式成立.否则,对任何正整数p ,存在*p I ξ∈以及1,(,)p p p x y I pξ∈,使得()()p p ij p p ijx x v y c x y -≤-∑由于*I 是有界闭集,根据Bolzano-Weierstrass 定理,可设*p I ξξ→∈,从而,,p p x y ξ→.于是,当p 充分大时,,(,())p p x y I ξδξ∈,所以,()()p p ij p p ijv x v y c x y -≤-∑矛盾.这样一来,如果命 *,()()sup x y I M v x v y ∈=- ,max{,}ij i jMc c δ=∑则对任何*,x y I ∈有()()v x v y c x y -≤-引理2.3.2.2 命*I 是有界闭域,v 是*I 上的连续可微向量场.命u :*n I R →是一个变换,定义为*()(),u x x t v x x I =+⋅∈ 于是,当||t 充分小时,u 是把*I 变成区域*()u I 的一一变换,区域*()u I 的体积可以表示为t 的多项式.证明:据引理1,设是的Lipschitz 常数.于是,当1||t c<时,变换u 是一一的.因为,若x y ≠而()()v x u y =,则由(()())x y t v y v x -=- 推出||x y t c x y x y -≤-<-,矛盾. 其次,由于所以的Jacobi 行列式是12,,()[]1,0,ii j ji jv J u tx i j i jδδ∂=+∂=⎧=⎨≠⎩因而可以表为的多项式:1()1()()n n J u a x t a x t =+++其中诸()i a x t 显然是的连续函数.注意,当0t =时,这个行列式之值为1,所以只要||t 充分小,则()J u 恒为正.于是,则反函数定理,当||t 充分小时,u 是把区域*I 变成区域*()u I 的一一连续可微变换,它的逆变换也是连续可微的.因此,按照体积的积分定义以及n 重积分的换元法则,区域的体积可以表示为**1()(())n u I vol u I du du =⎰⎰ *12()I J u dx dx =⎰⎰01n n a a t a t =+++ 其中 **1()i i n I a a x dx dx =⎰⎰*0,1,,,1i n a ==,nc k 中的1n -维单位球面定义为 1{|1}n n S x h x -=∈= 命v 是1n S -上的向量场.如果对任何1n x S -∈都有,()0x v x =,就说v 是1n S -上的向量场.今设v 是1n S -上的连续可微的单位切向量场,即是对任何1n x S -∈有()1v x =. 考虑区域图 2.4*13{|}22n I x k x =∈≤≤13命*()(),xv x x v x I x=∈ 于是,v 被扩充为*I 上的连续可微的切向量. 再考虑变换*:n u I k → *()(),u x x tv x x I =+∈ 由于()u x ==可见变换u 把半径为13()22r r ≤≤的球面1(){|}n n S r x R x r -=∈=变到半径为1(n S -上.引理2.3.2.3 当t 充分小时,变换u 把1()n S r -变成1(n S -证明:设11,3t t c<<,其中c 是在上的Lipschitz 常数.对于任何固定的10(n u S -∈命*()(),w x tv x x I =∈ 由于1()2tv x t x =⋅<, 所以13()()()22tv x w x tv x <-≤≤< 此外, ()()()()w x w y t v x v y t c x y -=⋅-≤⋅⋅-而1t c ⋅<,可见w 是把欧氏空间的闭集映入自身的压缩映像,据压缩映像原理,有唯一的原动点00()x w x =,即00()x tv x =+,所以1x =000()u tv ξξ=+,其中100n x S ξ-=∈.这就证明了对任何10(n u S -∈,存在唯一的10n S ξ-∈,使得00()u u ξ=14图 2.52.3.3 现在让我们对半径为r 的n 维球体(){|}n n B r x R x r =∈≤的体积给出一个计算公式(())n n n vol B r c r =其中 111312,2221322,23n nn n n cn n n c n n c n n n π----⎧⎪⎪-=⎨--⎪⎪-⎩为偶数为奇数 事实上,例如12342,,3c c c ππ===,按归纳法有10(())2[rn n n vol B r vol B dx -=⎰221012()2rn nn n c r x dx --=-⎰ 2102cos nn n c r d πθθ-=⎰算出上述积分,就得到所要的结果.图 2.6152.3.4 现在我们问:球面1n S -上是否存在连续可微的单位切向量?这个问题的回答有些古怪.如果1n -是奇数,回答是肯定的,事实上我们可以给出所要的向量,例如121321()(,,,),n n n v x x x x x x x x S --=---∈但是,如果1n -是偶数,回答则是否定的定理1.偶数维球面上不存在连续可微的单位切向量场.证明:假若不然,当n 是奇数时,若1n S -上存在连续可微的单位切向量场v ,则据引理3,变换()()u x x tv x =+当t 充分小时把区域*13{|}22n I x R x =∈≤≤变成区域*(){n u I x R x =∈≤, 所以*()u I 的体积是*(())[[n n vol u I vol B vol B =-31[()()22n n n n c =-*()n vol I =由于n 是奇数,这个体积不可能是t 的多项式,因而和引理2的结果矛盾. 定理1还可以稍加推广如下.定理2.偶数维球面上不存在处处不为零的连续向量场.证明:假若不然,命v 是1n S -上处处不为零的连续向量场, 1()n x Sm Min v x -∈=.于是0m >.据Weierstrass 逼近定理[8],中有界闭集上的连续函数可以用多项式函数均匀逼近,所以存在一个多项式映像1:n n p S R -→,即诸()i p x 都是1(,,)n x x 的多项式,图 2.716使得 1()(),n p x v x m x S --<∈ , 命 1()()(),,n u x p x p x x x x S -=-∈即 1()()()n i i j j i j u x p x p x x x =⎛⎫=- ⎪⎝⎭∑ 显然,上的联讯可微向量场,此外,21(),(),(),0,n u x x p x x p x x x x S -=-=∈所以u 是1n S -上的切向量场,最后,()0u x =蕴涵()(),p x p x x x =, 所以(),()0p x v x =,()()p x v x m -=>矛盾,从而u 在1n S -上处处不为零.因此()()()u x w x u x =就是1n S -上连续可微的单位切向量场.但是,如果1n -是偶数,定理1说,这是不可能的.例.地球表面的风的分布可以视为向量场,向量的长度和方向分别表示在该点的风力和风向.风力的分布当然是连续的,所以这个定理说,地球表面上总有一处是完全无风的.2.3.5 现在介绍一种方法,怎么样从维球体傻瓜的向量场构造出维球面上的切向量场.考虑1n k +,设111{|0}{|1}{|1}n n n n n n n k x k x S x k x B x k x +++=∈==∈==∈≤图 2.8n B 的边界球面1{|1}n n S x k x -=∈=是n S 的赤道.假设给了n B 上一个处处不为零的连续向量场u ,使得1n x S -∈时,()u x x =.首先,利用北极投影把n B 映成南半17球1{|0}n n n S x S x -+=∈≤,奇数对任何n x B ∈,从北极(0,0,1)N 到1(,,0)n x x x 的连线与n S 的交点ξ就是所要的对应点.容易验证,北极投影的确定义是2121()(2,,2,1),1n n x x x x x B x ξ=-∈+ 他的递变是111()(,,,0),1n n n x S ξξξξξ-+=∈- 显然,这两个变换都是连续可微的.对于任何固定的n x B ∈,n k 中的直线()x tu x + ()t a <经过北极投影变成n S 上的球面曲线(())x tu x ξ+ (注意,北极投影显然对整个n k 上的点都有定义,不过n k 中不属于的点背变到北半球上罢了).我们来证明:这条曲线在0t ≤时速度向量()u ξ是n S -在ξ处的切向量.事实上,按定义有 0()(())|t d u x tu x dt ξξ==+ 2201[(2()),,(2()),()1]1()t d x tu x x tu x x tu x dt x tu x =⎧⎫⎪⎪=⋅+++-⎨⎬++⎪⎪⎩⎭ {}22121221(1)[2(),,2(),2,()][2,,2,1]2()[1]n x u x u x x u x x x x x u x x =+⋅--++ 由于()u x 连续依赖于x ,而x 连续依赖于ξ,可见()u ξ连续依赖于n S ξ-∈.此外,{22222221(),(1)[4,()(1)2,()[4(1)]2,()[1]u x x u x x x u x x x x u x x ξξ=+⋅+--+-+ {}2222221(1)2,()(1)2,()[1]0x x u x x x u x x =+-++=可见,u 是n S -上的连续切向量场.最后,还应指出μ在n S -上处处不为零,因为()0μξ=蕴涵,()0x u x =,从而有推出所有的()0i x μ=,与假设矛盾.只要当1n x S -∈时,(),()x x u x x ξ==所以()(0,,0,1)μξ=指向正北.同样,如果我们利用南极投影和向量场u 我们将得到北半球{}1|0n n n S x S x ++=∈≥上的处处不为零的连续向量场μ,但是在赤道1n S -上这个向量场指向正南.为了得到整个球面n S 上的连续向量场,我们利用向量场u -,这样18相应的向量场μ在赤道1n S -上也指向正北.与南半球上的向量场一致.这样一来,我们从所给的向量场u 构造出在整个上处处不为零的连续向量场μ.2.3.6 Brouwer 不动点定理定理3.把n 球体映入自身的任何连续映象f 至少有一个不动点,即存在n x B ∈,使()f x x =证明:假若不然,对任何n x B ∈,()f x x ≠.命1,(),1n x x u x x y x B x y -=-∈--其中()x f x =显然,当1n x S -∈时,()u x x =; ()u x 连续依赖于x ,因为,1x y ≠.此外,u 在n B 上处处不为零,因为()0u x =蕴涵,x x x y y x x y --=-或,,x x x x y y x x y +=+ 所以,,,,,,x x x x y x y x x x x y +=+ 即,,x x y x =由此再据()0u x =即得y x =于是,u 是n B 上处处不为零的连续向量场.使得1n x S -∈时,()u x x =.据F ,可以由此构造n S 上处处不为零的连续切向量场μ.据定理2,当是偶数时是不可能的.因此,我们证明了当n 是偶数时的Brouwer 定理.奇数的情形则由偶数的情形立即推出.事实上,如果2121:k k f B B --→没有不动点,那么22:k k F B B →也没有不动点,这里12121(,,)((,,),0)k k F x x f x x -=.参考文献[1] 江泽涵,拓扑学引论(第二分册)[M].1965年,上海科技出版社,126.[2] 中国科学院数学研究所,《对策论(博弈论)》[M].1965年,人民教育出版社,1960.[3] V.Guillemin,A.Pollack,Differential Topology,Prentice-Hall,Inc.1974.[4] nor. Analytic proofs of the"Hainy Ball Theorem"and the Brouwer Fixed Point Theorem[M]. 1978年,521—524.[5] 王树禾,图论(第二版)[M].2009年,科技出版社,15.[6] 熊金城,点集拓扑讲义(第三版)[M].2003年,高等教育出版社,251.[7] 燕子宗,杜乐乐,刘永明,Brouwer不动点定理的初等证明[J].长江大学学报,2008,5(1),15-17.[8] 岳崇山,用组合发证明三维情况的Brouwer不动点定理 [J].数学学报,1962,No.7,p.33.[9] 江上欧,压缩映象原理的产生与应用,河北北方学院学报,2006,6(1),3-6.[10] J.Dieudonne,Elements d’Analyse,I.fondements de l’Analyse moderme Ganthier-Villars,1972.19致谢回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之极.在这四年的时间里,我在学习上和思想上都受益非浅.这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的.论文的写作是枯燥艰辛而又富有挑战的.老师的谆谆诱导、同学的出谋划策及家长的支持鼓励,是我坚持完成论文的动力源泉.在此,我特别要感谢我的论文指导老师刘永平老师.从论文的选题、文献的采集、框架的设计、结构的布局到最终的论文定稿,从内容到格式,从标题到标点,她都费尽心血.没有刘老师的辛勤栽培、孜孜教诲,就没有我论文的顺利完成.在此我还要感谢和我一起学习和生活的同学,与他们的交流使我受益颇多.最后要感谢我的家人以及我的朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心.这也将是我克服困难、不断前进的精神动力.郝斌斌2011年4月于兰州城市学院20。