当前位置:文档之家› 乙腈法抽提丁二烯工艺研究

乙腈法抽提丁二烯工艺研究

原创性声明
本人郑重声明:所提交的学位论文,是本人在导师的指导下,独立进行研究工作所取 得的成果。除文中己经注明引用的内容外,本论文不包含其他个人或集体已经发表或撰写 过的作品成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。 本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:
签字日期: 年 月 日
学位论文版权使用授权书
学位论文作者完全了解北京服装学院有关保留和使用学位论文的规定,即:研究生在
校攻读学位期间论文工作的知识产权单位属北京服装学院。学校有权保留并向国家有关部
门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅;学校可以公布学位论文的全
部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。
1.2.2 N-甲基呲咯烷酮法 .................................................. 6 1.2.3 二甲基甲酰胺法 .................................................... 7 1.3 DMF, NMP 和 ACN 三种工艺技术比较 ........................................ 8 1.3.1 溶剂............................................................... 8 1.3.2 技术水平.......................................................... 10 1.3.3 生产成本.......................................................... 11 1.4 工艺技术新进展 ....................................................... 11 1.4.1 炔烃选择性加氢技术 ............................................... 11 1.4.2 分壁式技术 ....................................................... 12 1.5 本课题研究的目的、意义和内容 ......................................... 13
2.2.1 塔模型............................................................ 15 2.2.2 压力变送模型 ..................................................... 16 2.2.3 换热器模型 ....................................................... 16 2.3 化工过程模拟优化..................................................... 16
Key words: butadiene, Aspen Plus, vapor-liquid equilibrium, process simulation, optimization
4
北京服装学院硕士学位论文
目录
前 言..................................................................... 1
With the software of Aspen, the whole process of distilling butadiene with ACN is simulated in this article. The energy efficiency of the whole separation system is increased through synthesis and optimization.
1.2.1 乙腈法 ............................................................ 4 1.2.1.1 意大利 SIR 工艺 ................................................ 4 1.2.1.2 日本 JSR 工艺 .................................................. 5 1.2.1.3 国内乙腈法工艺 ................................................ 6
The acetonitrile recovery column is considered to increase the operation pressure. The energy integration plan is designed to further increase the energy efficiency of the whole system. In the unit of refined butadiene, saving energy is realized through changing the order of original
Further, the C4 hydrocarbons separation system is simulated using the software of Aspen. For each unit, the thermodynamics function is confirmed. Based on the simulation results and the major components analysis each column, the plans are simulated well with the established thermodynamics functions, and the operation parameters are optimized by the sensitivity analysis.
First,the isotherm vapor-liquid equilibrium data for ACN/C4 is measured under 30℃、50℃ and 60℃ with static equilibrium kettle. The experimental data are calculated by the NRTL equation, the interaction parameter of NRTL equation are correlated by experimental data. The calculative results show that calculated values of model are in agreement with the experimental data, the study provides guidance for step simulating.
2
北京服装学院硕士学位论文
STUDY ON PROCESS OF BUTADIENE EXTRACTIVE UNIT WITH ACETONITRILE METHOD
ABSTRACT
Butadiene is an important and basic organic material in the petrochemical field. The major method for separating butadiene is extractive distillation in industry at present, which the common used solvents are ACN、DMF and NMP,and ACN is widely used in many devices of seperating butadiene. But with higher energy consumption compared to foreign installations domestic producing butadiene is still a need to be addressed urgently, so further improvement of process and the energy efficiency of process, decrease the cost of production have become the most urgent task.
本文利用 Aspen 软件对乙腈法抽提丁二烯进行了全流程模拟,对该流程 进行了优化,实现了生产系统的节能。
首先,采用静态总压釜测定了乙腈/C4 体系在 30℃、50℃和 60℃的等温 汽液相平衡数据。选用 NRTL 方程作为活度系数模型,由实验数据回归得到 NRTL 方程中的相互作用参数,模型计算值与实验值吻合良好,为模拟计算提供了 数据支持。
3
北京服装学院硕士学位论文
process according to the difference of the separation effect each column. In the unit of water scrubber column, investment and operation expense are saved with sparing a water scrubber column. The new process is more simple, reasonable and energy-saving.
其次,利用 Aspen 软件对该系统进行模拟。由于该分离系统较复杂,且 各个分离单元的分离任务和分离条件差别较大,本文对不同的分离单元分别 采用常规和分段方程法,最终模拟结果与原设计数据吻合。根据确认的热力 学方程和工艺参数,分析了各塔中主要组分的分布情况,并利用灵敏度分析 对全流程中关键操作参数进行讨论和优化,确定优化参数。
相关主题