基于EWB的数字电路设计方案第一章绪论随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。
电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。
为了能在电路付诸实现之前,完全掌握操作环境因素(如电源电压、温度等) 对电路的影响,利用计算机辅助设计进行电路模拟与仿真,并进行输入与输出信号响应的验证,可有效地节省产品开发的时间与成本。
Elect ronics Workbench ( EWB) 软件是专门用于电子电路仿真的“虚拟电子工作台”软件,他是目前全球最直观、最高效的EDA 软件。
该软件的自动化程度高、功能强大、运行速度快,而且操作界面友善,有良好的数据开放性和互换性。
能够提供电阻、电容、三极管、集成电路等14 大类几千种元器件;能够提供示波器、万用表等十几种常用的电子仪器;具有强大的电路图绘制功能,可绘制出符合标准的电子图纸;他还具有强大的波形显示功能,并且结果可轻松放入各类文档。
用该软件进行设计、分析非常方便。
本文在EWB 基础上设计的数字钟,是由数字集成电路构成、用数码管显示的一种现代计时器,与传统机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此可望得到广泛使用。
第二章EWB软件介绍与应用2.1 EWB软件概述在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。
在众多的EDA设计和仿真软件中,EWB以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。
EWB及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。
EWB最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB的一大特色。
EWB所包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。
而通常一个普通实验室是无法完全提供这些设备的。
这些仪器的使用使仿真分析的操作更符合平时实验的习惯。
随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。
电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。
EDA是在计算机辅助设计(CAD)技术的基础上发展起来的计算机设计软件系统。
与早期的CAD软件相比,EDA软件的自动化程度更高、功能更完善、运行速度更快,而且操作界面友善,有良好的数据开放性和互换性。
电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点:(1)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。
(2)EWB软件带有丰富的电路元件库,提供多种电路分析方法。
(3)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。
(4)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
2.2 EWB软件使用2.2.1 EWB软件主界面图2-1 EWB主界面2.2.1 EWB软件元件库图2-2 EWB元件库2.2.2 EWB软件工具栏图2-3 EWB工具栏2.2.3 EWB软件信号库栏图2-4 EWB信号库2.2.4 EWB软件基本器件库栏和指示器件库栏图2-5 EWB软件基本器件库栏和指示器件库栏第三章主要元件介绍3.1设计构思要构成一电子钟电路,首先应有一个秒脉冲产生器,这可由石英晶体振荡器产生的基准信号经过整形和分频获得。
秒脉冲经过秒计数器(60进制)可以累计秒钟数,而秒计数器输出的分脉冲计数器(60进制)可以累计分钟数。
同样地,分计数器输出的时脉冲经过时计数器(24进制)可以累计小时数。
这此时、分、秒计数器通过译码器和显示器便可以显示时、分、秒。
最后,还需要考虑校对时电路。
(1) 设计一个具有‘时’、‘分’、‘秒’的十进制数字显示(小时从00~23) 的计数器。
(2) 具有手动校时、校分的功能。
(3) 具有整点报时的功能(整点灯闪1秒)。
3.2设计方案根据所给设计构思,画出数字钟原理框图见图3-1。
由设计方案使用EWB软件设计仿真并调试数字钟电路。
图3-1 数字钟原理框图3.3 74ls160计数器应用3.3.1 十进制接线演示电路:74ls160十进制计数器连线如图3-2图3-2 74ls160十进制计数器连接图CLR:异步清零端CLK:时钟输入端(上升沿有效)A- D:数据输入端ENP,ENT:计数控制端LOAD:同步并行置入控制端RCO:进位输出端表174160的功能表如表1所示。
由表1可知,74160具有以下功能:①异步清零当CR(CLR’)=0时,不管其他输入端的状态如何(包括时钟信号CP ),计数器输出将被直接置零,称为异步清零。
②同步并行预置数在CR=1的条件下,当LD(LOAD’)=0、且有时钟脉冲CP 的上升沿作用时,D0、D1、D2、D3 输入端的数据将分别被Q0~Q3所接收。
由于这个置数操作要与CP 上升沿同步,且D0、D1、D2、D3的数据同时置入计数器,所以称为同步并行置数。
③保持在CR=LD=1的条件下,当ENT=ENP=0,即两个计数使能端中有0时,不管有无CP 脉冲作用,计数器都将保持原有状态不变(停止计数)。
需要说明的是,当ENP=0, ENT=1时,进位输出C也保持不变;而当ENT=0时,不管ENP状态如何,进位输出RCO=0.④计数当CR=LD=ENP=ENT=1时,74160处于计数状态,电路从0000状态开始,连续输入10个计数脉冲后,电路将从1001状态返回到0000状态,RCO端从高电平跳变至低电平。
可以利用RCO端输出的高电平或下降沿作为进位输出信号。
3.3.2 七进制接线用160和与非门组成7进制加法计数器异步清零端设计图3-374160从0000状态开始计数,当输入第7个CP 脉冲(上升沿)时,输出Q3 Q2 Q1 Q0=0110,此时反馈给CR端一个清零信号,立即使Q3 Q2 Q1 Q0返回0000状态,接着,CR端的清零信号也随之消失,74160重新从0000状态开始新的计数周期。
3.4 7490计数器应用经过4 片7490 进行十进制级联形成1000分频功能,因为每片为1/ 10 分频,4 片级联正好获得。
74LS90是异步二—五—十进制加法计数器,它既可以作二进制加法计数器,又可以作五进制和十进制加法计数器。
通过不同的连接方式,74LS90可以实现四种不同的逻辑功能;而且还可借助R0(1)、R0(2)对计数器清零,借助S9(1)、S9(2)将计数器置9。
其具体功能详述如下:(1)计数脉冲从CP1输入,QA作为输出端,为二进制计数器。
(2)计数脉冲从CP2输入,QDQCQB作为输出端,为异步五进制加法计数器。
(3)若将CP2和QA相连,计数脉冲由CP1输入,QD、QC、QB、QA作为输出端,则构成异步8421码十进制加法计数器。
(4)若将CP1与QD相连,计数脉冲由CP2输入,QA、QD、QC、QB作为输出端,则构成异步5421码十进制加法计数器。
(5)清零、置9功能。
a) 异步清零当R0(1)、R0(2)均为“1”;S9(1)、S9(2)中有“0”时,实现异步清零功能,即QD QC QB QA=0000。
b)置9功能当S9(1)、S9(2)均为“1”;R0(1)、R0(2)中有“0”时,实现置9功能即QD QC QB QA=1001。
图3-4 74LS90引脚排列和芯片功能表下图中为7490计数器的十进制接线图:图3-5 7490计数器的十进制接线图第四章数字钟基本原理及单元电路设计4.1数字钟的基本原理工作原理:数字电子钟由振荡器、分频器、计数器、译码显示、报时等电路组成。
其中振荡器和分频器组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。
秒信号送入计数器进行计数,把累加的结果以‘时’、‘分’、‘秒’的数字显示出来。
‘时’显示由24 进制计数器、译码器、显示器构成,‘分’、‘秒’显示分别由60进制计数器、译码器、显示器构成。
可进行整点报时,计时出现误差时,可以用校时电路手动校时、校分和秒。
4.2石英晶体振荡器振荡器是计时器的核心,振荡器的稳定度和频率的精准度决定了计时器的准确度。
振荡电路如图2 所示。
由石英晶体、微调电容(C4)、等构成。
晶振c5频率为10 kHz ,输出反馈电阻R1 为555提供偏置,使电路工作于放大区。
与石英晶体串联的微调电容,可以对振荡器频率做微量调节,从而在输出端得到较稳定的10 kHz 脉冲信号。
图4.1 石英晶体振荡器4.3 分频电路分频电路如图4-2所示,产生标准秒脉冲信号,选用4 片计数器7490 实现。
由振荡电路产生频率为10 kHz 的周期性方波信号,经过4 片7490 进行级联,因为每片为1/ 10 分频,4 片级联正好获得1 Hz 标准秒脉冲信号。
图4-2 分频电路4.4计数与译码显示电路4.4.1秒计数电路秒、分为60 进制计数器,他们的个位为十进制,十位为六进制。
时为二十四进制计数器,个位为十进制,当十位计数为2 ,个位计数到4 时清零。
采用6 片中规模计数器74160 实现。
(1) 秒、分计数电路秒、分计数电路为60 进制,如图4-3 为秒计数电路,由2 片74160 四位二进制计数器组成。
74160 具有异步清零的功能,第一片构成十进制计数器,第二片构成六进制。
在第一片计数器中,当第10 个脉冲到来时,他的输出状态为“1010”,QDQB 为高电平。
因为74160 异步清零端为高电平清零,所以QDQB 分别接到清零端即构成十进制。
第二片为六进制,当第一片清零的同时给第二片的ENT端进行计数,当ENT端的第6 个脉冲到来时,第二片的QCQB 均为高电平,将他们连接到计数器的清零端,在清零的同时给上一级进位。
从而构成60 进制计数器。
分别把秒十位、个位输出端接到带译码的七段显示器,当电路运行后,计数器便开始从00~59 计数,显示器就会显示相应的数码。
图4.3 秒计数电路4.4.2分计数电路图4-4 分计数电路4.4.3时计数电路时计数电路为24 进制,如图5 所示,由2 片74160、与门、或门组成。