1.沉淀溶液的浓度
沉淀溶液的浓度会影响沉淀的粒度、晶形、收率、纯度及表面性质。
通常情况下,相对稀的沉淀溶液,由于有较低的成核速度,容易获得粒度较大、晶形较为完整、纯度及表面性质较高的晶形沉淀,但其收率要低一些,这适于单纯追求产品的化学纯度的情况;反之,如果成核速度太低,那么生成的颗粒数就少,单个颗粒的粒度就会变大,这对于微细粉体材料的制备是不利的,因此,实际生产中应根据产品性能的不同要求,控制适宜的沉淀液浓度,在一定程度上控制成核速度和生长速度。
2.合成温度
沉淀的合成温度也会影响到沉淀的粒度、晶形、收率、纯度及表面性质。
在热溶液中,沉淀的溶解度一般都比较大,过饱和度相对较低,从而使得沉淀的成核速度减慢,有利于晶核的长大,得到的沉淀比较紧密,便于沉降和洗涤;沉淀在热溶液中的吸附作用要小一些,有利于纯度的提高。
在制备不同的沉淀物质时,由于追求的理化性能不同,具体采用的温度应视试验结果而定。
例如:在合成时如果温度太高,产品会分解而只得到黑色氧化铜;在采用易地分解、易挥发的沉淀剂时,温度太高会增加原料的损失。
3.沉淀剂的加入方式及速度
沉淀剂的加入方式及速度均摊会影响沉淀的各种理化性能。
沉淀剂若分散加入,而且加料的速度较慢,同时进行搅拌,可避免溶液局部过浓而形成大量晶核,有利于制备纯度较高、大颗粒的晶形沉淀。
例如:制备白色无定形粉末状沉淀氢氧化铝,使用的原料为NaAlO2及碳酸氢铵,其主要杂质为碱金属,开始时以较慢的线速度将NH4HCO3加入到NaAlO2的热溶液中,待沉淀析出大半时,再加快沉淀剂的加入速度,直至反应结束。
这样得到的Al(OH)3颗粒较大,只需要洗涤数次,产品中碱金属杂质即可合格。
如将沉淀剂浓度加大,加料速度加快、反应温度又低,这样得到的是Al(OH)3的胶状沉淀,即使洗涤数十次,产品中碱金属含量也不容易合格。
当然,这只是从化学纯度的角度来考虑的,或要生产专用性的Al(OH)3产品,沉淀剂的加入方式及速度则应该根据具体要求而定。
4.加料顺序
加料方式分正加、反加、并加三种。
生产中的“正加”是指将金属盐类先放于反应器中,再加入沉淀剂;反之为“反加”;而把含沉淀物阴、阳离子的溶液同时按比例加入到反应器的方法,称为“并加”。
加料顺序与沉淀物吸附哪种杂质以及沉淀物的均匀性有密切的关系。
“正加”方式的沉淀主要吸附原料金属盐的阴离子杂质;且在中和沉淀时,先、后生成的沉淀,其所处的环境PH值不同,得到的沉淀产品均匀性差。
“反加”方式主要吸附沉淀的阴离子杂质;若是中和填充沉淀时,在整个沉淀过程占卜PH值变化很小,产品均匀性较好。
“并加”方式可避免优秀作品溶液的局部过浓,沉淀过程较为稳定,且吸附杂质较小,从而可得到理化性能较好的产品。
在实际生产中应视产品的具体要求而定。
5.沉淀剂
沉淀剂的选择应考虑产品质量、工艺、产率、原料来源及成本、环境污染和安全性等问题。
在工艺允许的情况下,应该选项用溶解度较大、选择性较高、副产物影响较小的沉淀剂,也便易于除去多余的沉淀剂、减少吸附和副反应的发生。
在生产碳酸盐沉淀产品时,可选择的沉淀剂有Na2CO3、NaHCO3 NH4HCO3和其他多种可溶性碳酸盐,但一般以NH4HCO3为好,因为它的溶解度大、易洗涤、副产物易挥发、污染也较小,而且原料来源广泛、价格也低。
沉淀剂的使用一般应过量,以便能获得高的收率,减少金属盐离子的污染;但也不可太过量,否则会因络合效应和盐效应等降低收率。
一般过量20%-50%就能满足要求了。
6.沉淀的陈化
陈化可释出沉淀过程带入的大部分杂质。
在陈化过程中,因小颗粒沉淀的比表面积大,表面能也大;相同量大颗粒沉淀的比表面积较小,表面能就小,体系的变化有从高能量到低能量的自发趋
势,因此小颗粒沉淀会逐渐溶解,大颗粒沉淀可慢慢再长大。
其次,从沉淀的溶解度来看,当体系中大、小颗粒共存时,若溶液相对于大颗粒沉淀是饱和的,那么对小颗粒沉淀就不饱和,因此小颗粒沉淀溶解,而大颗粒沉淀会长大,使沉淀颗粒表面完整,减少吸湿和结块,提高沉淀的储存和使用性能。
陈化过程由于小颗粒的溶解,减少了杂质的吸附和包裹夹带,起到所谓局部重结晶的作用,可以提高沉淀产品的纯度。
陈化时的条件,如时间和温度等也会影响沉淀的性能,因此,应该根据产品的具体要求而确定。
在实际生产中,必须注意的是陈化的时间如果超过了一定的范围就可能会引起后沉淀,反而使产品的纯度下降。