当前位置:文档之家› 高考试题(卷)的探究(一):鳖臑几何体的试题(卷)赏析和探究文章修改稿1125

高考试题(卷)的探究(一):鳖臑几何体的试题(卷)赏析和探究文章修改稿1125

图 1DPECBA鳖臑几何体的试题赏析与探究岳 峻1 阮艳艳2安徽省太和县太和中学 2366002015年湖北高考数学之后,广大考生感言:阳马、鳖臑,想说爱你不容易;中学教师考后反思:阳马、鳖臑,不说爱你又没道理;试题评价专家说:湖北高考数学试题注重数学本质,突出数学素养,彰显数学文化.阳马、鳖臑是什么呢? 1 试题再现 1.1 文科试题《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图1所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE .(I)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(II)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 1.2 理科试题《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图2,在阳马ABCD P -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BED FPECBA图2(I)证明:PB 平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(II)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值. 2 鳖臑的史料 2.1 史料《九章算术·商功》:“斜解立方,得两堑堵。

斜解堑堵,其一为阳马,一为鳖臑。

阳马居二,鳖臑居一,不易之率也。

合两鳖臑三而一,验之以棊,其形露矣.”刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云。

中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.”2.2 阐释阳马和鳖臑是我国古代对一些特殊锥体的称谓,取一长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个.以矩形为底,另有一棱与底面垂直的四棱锥,称为阳马.余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑.3 试题赏析图3图43.1 生僻字问题试题中出现了中国古代数学巨著《九章算术》中“阳马”“鳖(b īe)臑(n ào)”的生僻词,但题目中已经对这两个词语的含义进行了现代文解释,从而高考考生对四棱锥-P ABCD 所具备的特点能够完全理解,并且也能够知道如何判断四面体是否是鳖臑,因此本题中的生僻字不会对考生解题带来困扰.鳖臑,并没闹!3.2 教材溯源北京师范大学出版社《普通高中课程标准实验教科书数学必修2》的“第一章 立体几何初步”的“第六节 垂直关系”的例题1(第37页):如图5所示,在ABC Rt ∆中,︒=∠90B ,点P 为ABC∆所在平面外一点,⊥PA 平面ABC 。

问:四面体PABC 中有几个直角三角形?教材借助于这道例题给同学们介绍了鳖臑几何体,并提出思考问题(第38页): 仔细观察,你可以从图5中得出几组互相垂直的平面?让同学们更进一步认识这一特殊几何体。

教材紧接着在随后的例题2中就给出了以鳖臑为载体的几何命题的证明问题(第38页):如图6,AB 为⊙O 的直径,⊙O 所在平面为α,α⊥PA 于A ,C 为⊙O 上异于A ,B 的一点。

求证:平面⊥PAC 平面PBC 。

该题借助于鳖臑这一几何体中丰富的垂直关系,让学生来熟悉垂直中的判定定理以及性质定理的应用。

3.3 设计理念C图5图6普通高中数学课程标准中指出:数学是人类文化的重要组成部分,数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。

为此,高中数学教学应注重体现数学的文化价值,而2015年湖北卷就很恰当的体现了数学文化价值上的考查。

命题者将题目的背景取自于古代数学典籍并不意味着试题的难度增大,匠心独运地体现了我国古代数学成果的灿烂辉煌,拓宽了知识面,考查考生的阅读能力、审题能力和应用能力,培养考生的创新精神,注重数学本质,提高数学素养,彰显命题组的博学与智慧.尤其是理科第19题、文科第20题,创新于数学史料的加工,以阳马和鳖臑为载体进行命题,来源于教材又囿于教材,彰显数学文化,数学味道正,文化气息浓,让“枯燥”的高考试卷多了几分生气和灵性,给人耳目一新的感觉.4 鳖臑几何体的性质的探究 4.1 鳖臑几何体中的垂直关系如图7,鳖臑几何体-P ABC 中,⊥PA 平面ABC ,⊥AC CB ,⊥AM PB 于M ,AN PC ⊥于N .(1)证明:BC PAC ⊥平面; (2)证明:PB AMN ⊥平面; (3)证明:PBC AMN ⊥平面平面; (4)证明:⊥PB MN .证明 (1)因为⊥PA 平面ABC ,⊂BC 平面ABC ,所以⊥PA BC , 又⊥AC CB ,=ACPA A ,所以BC PAC ⊥平面;(2)因为BC PAC ⊥平面,⊂AN 平面PAC ,所以⊥BC AN , 又AN PC ⊥,=PCBC C ,所以⊥AN 平面PBC ,则⊥AN PB ,又⊥AM PB ,所以PB AMN ⊥平面;(3)因为PB AMN ⊥平面,所以PBC AMN ⊥平面平面. (4)因为BC PAC ⊥平面,所以平面⊥PBC 平面PAC , 又AN PC ⊥,所以⊥AN 平面PBC ,则⊥AN MN , 又PB AMN ⊥平面,所以⊥PB MN ,评注 图形中异面直线PA 与BC 的距离等于线段AC 的长度;异面直线AN 与PB 的距离等于线段MN 的长度;4.2 鳖臑几何体中的空间角如图8,设α为CB 与斜线PB 的夹角∠PBC ,β为CB 与斜线PB 在底面ABC 的射影AB 的夹角∠ABC ,θ为PB 与底面ABC 所成的角∠PBA ,γ为二面角--A PB C 的平面角,ρ为直线AB 与平面PBC 所成的角,ϕ为直线PC 与底面ABC 所成的角, ω为直线PC 与平面PAB 所成的角,则(1)cos cos cos αβθ=; (2)cos sin cos ϕγθ=; (3)sin sin sin ρϕβ=; (4)sin sin sin θϕα=; (5)ωβαsin sin tan =. 证明 (1)cos cos cos βθα=⋅=BC ABAB PB ; (2)cos cos sin cos cos ϕγθ∠====∠ANPAN AN AP AM PAM AM AP;(3)sin sin sin ϕβρ=⋅==AN AC ANAC AB AB ; (4)sin sin sin ϕαθ=⋅==PA PC PA PC PB PB; (5)过C 作⊥CH AB 于H ,连接PH ,则⊥CH 平面PAB ,ω∠=CPH ,图 9DPECBAαωβtan sin sin ===BC PCPCCH BC CH. 评注 图形中二面角--P BC A 的平面角的大小等于ϕ,二面角--A PB C 的平面角的大小等于γ,二面角--B PA C 的平面角的大小等于2πδβ=-;直线AB 与平面PAC 所成的角为δ,直线AC 与平面PBC 所成的角为ϕ,直线AC 与平面PAB 所成的角为2πδβ=-,直线PB 与平面PAC 所成的角为2πα-,直线PA 与平面PBC 所成的角为2πϕ-.5 鳖臑几何体模型的应用 5.1 2015湖北真题评析 例1 (同1.1 文科试题)解析 (I )因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而=PD CD D ,所以BC PCD ⊥平面.而DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而=PCBC C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是BCD ∠,BCE ∠,DEC ∠,DEB ∠.(II )因为PD ⊥底面ABCD ,PD 是阳马P ABCD -的高, 又点E 是PC 的中点,则点E 到底面ABCD 的距离为PD 的12, 由于2∆=ABCDBCD S S ,所以121341132∆⋅==⋅ABCD BCD S PDV V S PD .例2 (同1.2 理科试题)DFPEC解析 (I )同例1 证明DE ⊥平面PBC .而⊂DE 平面DEF ,所以平面⊥DEF 平面PBC . 而平面⋂DEF 平面EF PBC =,EF PB ⊥, 所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,.(II )因为PB ⊥平面DEF ,PD ⊥底面ABCD ,则平面DEF 与平面ABCD 所成二面角的平面角即为PB 与PD 所成的角3π∠=BPD ,不妨设1PD DC ==,则=BD ,在∆Rt BCD 中, =BCDC BC =. 5.2 鳖臑在手,横扫立体几何试题鳖臑几何体不仅覆盖了立体几何中点、线、面的各种位置关系,以及各种空间角的计算,又突出了“垂直”这个横贯立体几何知识的“红线”,因此,鳖臑几何体是探求空间中线线、线面、面面垂直关系的十分重要的基本图形,也是研究棱锥、棱台的基本模型。

例3 已知BAC ∠在α内,P PE AB α∉⊥,于E ,PF AC ⊥于F ,=PE PF ,α⊥PO ,求证:O 在BAC ∠的平分线上(即BAO CAO ∠=∠). 解析 因为,,PE AB PF AC PO α⊥⊥⊥,由三垂线定理逆定理知:,AB OE AC OF ⊥⊥,因为,PE PF PA PA ==,所以PAE Rt ∆≌PAF Rt ∆,则AE AF =, 又因为AO AO =,所以Rt AOE Rt AOF ∆≅∆,故BAO CAO ∠=∠.评注 经过一个角的顶点引这个角所在平面的斜线,如果斜线与这个角两边夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线.本题图形中的三棱锥P OAF -就是鳖臑几何体,显然,这个三棱锥中蕴含着棱锥、棱台的所有要素。

例4 (2015新课标I )如图12,四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若120ABC ∠=,AE EC ⊥,三棱锥E ACD -求该三棱锥的侧面积.解析 (1)因为四边形ABCD 为菱形,所以BD AC ⊥,又BE ⊥平面ABCD ,所以几何体BCG E -是鳖臑,由鳖臑几何体的垂直关系性质1可知⊥CG 平面BEG ,又⊂CG 平面AEC ,所以平面AEC ⊥平面BED .(2) 因为120ABC ∠=,AE EC ⊥,=AE CE,所以=AC ,因为三棱锥E ACD -的体积为3BCG E -设=BG x ,则,2===CG BC AB x,==AE CE,=BE ,所以BCG E -的体积为21133∆⋅==BCG S BE 1=x , 所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均故三棱锥E ACD -的侧面积为3+例 5 (2015新课标Ⅱ)如图13,长方体图13A1EDGCBA图12。

相关主题