当前位置:文档之家› 模型预测控制(全面讲解)

模型预测控制(全面讲解)

YP (k ) yP (k 1)
β β1
β2 β P
T
T
yP (k 2) yP (k P)1P
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
预测控制并不是要求输出迅速跟踪设定值,而 是使输出按一定轨迹缓慢地跟踪设定值
过去 yd y(k) 未来
yr(k)
e

Ts T
T ——参考轨迹的时间常数 y(k)——当前时刻过程输出 yd ——设定值
预测控制有关公司及产品 SetPoint : IDCOM DMC : DMC AspenTech : SetPoint Inc : SMC- IDCOM DMC Corp : DMCplus Profimatics: PCT Honeywell : Profimatics : RMPCT Adersa(法) : HIECON Invensys : Predictive Control Ltd : Connoisseur DOT(英) : STAR
1
k
k+1
t/T
1─k 时刻的预测输出 2─k +1时刻实际输出
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)

模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)

T
第三节 模型算法控制(MAC) 一. 预测模型
u (k ) u (k 1) u (k 2) ym (k 1) y (k 2) u (k 1) u (k ) u (k 1) m Ym (k ) ym (k M ) u (k M 1) u (k M 2) u (k M 3) ym (k M 1) u (k M 1) u (k M 1) u (k M 2) y (k P) u (k M 1) u (k M 1) u (k M 1) m
U1 (k ) u (k N 1) u (k N 2) u (k 1)1( N 1)
U 2 (k ) u(k ) u(k 1) u(k M 1)1M
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
3.8
4.6 6 5
y (4) h4u (0) h3u (1) y (5) h5u (0) h4u (1)
t/T
N
3
2.3 3 0 u 1 2 2.5 1.5
3
4
0.8 5 6
y (k ) hi u (k i )
i 1
2 1 u(0) u(1)
y (t ) g ( )u (t )d

预测模型形式

参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
第二节 预测控制的基本原理 一. 预测模型(内部模型)

基于模型的预测示意图
过去 未来 3 y 4 1 u k 时刻 2
1—控制策略Ⅰ 2—控制策略Ⅱ
3—对应于控制策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
第二节 预测控制的基本原理 二. 滚动优化(在线优化)
T
h1 hM 1 hM hP 1
T
0 hP M 2
hN 0 H1
hN 1 hN 0 hN
h1 h1 h2 P M 1 hi i 1 P M
d(k) r(k)
+ _
在线优化 控制器
u(k) 受控过程
y(k)
动态 预测模型
+ +
y(k+j| k)
_
y(k|k)
+
模型输出 反馈校正
三要素:预测模型
滚动优化
反馈校正
第二节 预测控制的基本原理 一. 预测模型(内部模型)

预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) | j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p}
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
主要内容
预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型

MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
有限个采样周期后
lim h j 0
1 1 h2 h 0 hN
j
第一节 预测控制的发展
预测控制的特点

建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果


简单实用的反馈校正,有利于提高控制系统的 鲁棒性
不增加理论困难,可推广到有约束条件、大纯 滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制


系统的渐近稳定性


系统的线性

第三节 模型算法控制(MAC) 一. 预测模型
y 2.3 3 0 1 2 2.5 u
1.5 0.8
1
t/T
t/T
y
u
4.6
6
5 3 1.6
2
0
1
2
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y
7.6 8.5
6.5
y (1) h1u (0) y (2) h2u (0) h1u (1) y (3) h3u (0) h2u (1)


u (k N 1) h1 h u ( k N 2) 2 u (k N M ) u (k N M 1) u (k M 2) u (k M 3) u (k P N ) hN
第四章
模型预测控制
内容要点
1 预测控制的发展 2 预测控制的基本原理 3 模型算法控制(MAC) 4 动态矩阵控制(DMC) 5 状态反馈预测控制(SFPC)
6 多变量协调预测控制
第一节 预测控制的发展

现代控制理论的发展与特点

特点
状态空间分析法 最优性能指标设计

应用
航天、航空等军事领域
1
2
N
t/T
系统的离散脉冲响应示意图
第三节 模型算法控制(MAC) 一. 预测模型

MAC算法中的模型参数

有限脉冲响应(Finite Impulse Response,FIR) hT={h1,h2,…,hN} 可完全描述系统的动态特性 N称为建模时域 保证了模型可用有限的脉冲响应描述 保证了可用线性系统的迭加性

最优控制
通过使某一性能指标最优化来确定其未来的控制作用的

局部优化
不是采用一个不变的全局最优目标,而是采用滚动式的 有限时域优化策略。在每一采样时刻,根据该时刻的优 化性能指标,求解该时刻起有限时段的最优控制率

在线滚动
计算得到的控制作用序列也只有当前值是实际执行的, 在下一个采样时刻又重新求取最优控制率
i i i j M 2
j M , M 1, , P
控制作用可分为两步
U1 (k ) u (k N 1) u (k N 2) u (k 1)1( N 1)
T
已知控制作用
U 2 (k ) u(k ) u(k 1) u(k M 1)1M 未知控制作用
第一节 预测控制的发展
1978年,Richalet 、Mehra提出了基于脉冲响应的模型预 测启发控制(Model Predictive Heuristic Control , MPHC),后转化为模型算法控制(Model Algorithmic Control,MAC)
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)

反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化

闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
第二节 预测控制的基本原理 三. 反馈校正(误差校正)

反馈校正示意图
2 3 y u 4
yP(k) u(t)
k
k+1
k+P
t/T
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
根据设定值和当前过程输出测量值确定参考轨迹 最广泛使用的参考轨迹为一阶指数变化形式
yr (k j ) j y (k ) (1 j ) yd
j 1, 2, , P
Ts ——采样周期
第三节 模型算法控制(MAC) 一. 预测模型
Ym (k ) H1U1 (k ) H 2U 2 (k )
h1 h 2 h2 h3 H2 hM h M 1 hP 1 P( N 1) hP

PID控制:根据过程当前的和过去的输出测量 值和给定值的偏差来确定当前的控制输入
预测控制:不仅利用当前的和过去的偏差值, 而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小
相关主题