数字信号处理基本概念
非高斯性分为两类: 一类是所有时间内均为同一种非高斯概率分布; 另一类是多数时间为一种高斯分布,少数时间为另一种 高斯分布或非高斯分布,后者用另种分布的数据作为 异常值处理——鲁棒参数估计,前者用高阶谱估计。
北京交通大学
信息科学研究所
引论
20世纪80年代后,光纤通信和激光技术的发展、 基于量子信息、量子检测、量子估计理论的研究 和发展,又是一个新的领域。 因此,现代信号处理包括信号检测、波形估计、 最优滤波、现代谱分析、时频分析、自适应理论、 非高斯信号的高阶谱估计等广泛内容,是现代信 息论、控制论、系统论的重要分支。
北京交通大学
信息科学研究所
引论 本课分八章 第一章 数字信号处理基本概念 第二章 随机信号分析基础 第三章 平稳随机信号的随机模型 第四章 波形估计 第五章 功率谱估计 第六章 自适应滤波 第七章 小波分析和小波变换
第一章 数字信号处理基本概念
北京交通大学
信息科学研究所
Contents
现代数字信号处理
引论
北京交通大学
信息科学研究所
引论
现代数字信号处理是基于统计判决理论的 随机信号处理的进一步发展。 随机信号用统计方法来研究,是从20世纪 40年代军事科学的需要而迅速发展起来的。
北京交通大学
信息科学研究所
引论
40年代,由维纳和科尔莫哥罗夫将随机过程和数 理统计的观点引入通信、雷达和控制中,建立了 维纳滤波理论。通过解Wiener-Hopf方程,在最小 均方误差准则下,求线性滤波器的最优传递函数。 1943年,诺斯提出了最大输出信噪比的匹配滤波 器理论,1946年,科捷利尼科夫提出相关接收机 理论。50年代香农信息论问世不久,伍德沃德 (Woodward)提出后验概率接收机概念。后来密德 尔顿(Middleton)提出风险理论准则。这一阶段主 要是应用于通信技术的统计理论和估计理论的发 展和成熟。奠定了随机信号处理的主要理论基础。
北京交通大学
信息科学研究所
引论
(3)现代谱估计理论:基于FFT的周期图法和BT (Blackman-Tukey)法的经典谱估计法存在分辨率 低的问题。1967年伯格(Burg)提出最大熵谱分析, 帕曾(Parzen) 1968年提出的自回归(AR)模型谱估 计,以及后来发展的谐波分析法、最大似然法、 AMAR和空间谱估计(Music, Esprit)等,随机信号 谱估计进入现代谱估计发展阶段。 (4)非线性检测与估计,大多数火箭制导和控制问 题的模型是非线性的。频率调制和相位调制,相 位检测和相参积累,实际上都是非线性检测与估 计问题。
从回波检测目标、去噪中利用多普勒信号将运动 物体与固定体区分、不同运动速度物体在频域上 区分。这一区分又是通过回波信号和发射信号间 的相位差实现的。即运动体的相位差是随机的, 固定体的相位差是固定的,因此通过相位检测实 现。 相参积累——包络检波前,将多个回波脉冲叠加, 需要严格的相位关系。 在包络检波后的累积,由于只有幅度累积,无相 位信息,故又称非相参积累。
北京交通大学
信息科学研究所
引论
(7)时频联合分析、多分辨率分析:即基于线性时 频分析的STFT、Gabor和小波变换与分析、基于非 线性时频分析的Winger_Ville分布。 (8)非高斯信号处理:与以二阶统计量作为分析项 的传统信号处理不同(因为一般传统随机信号处 理基本上将实际过程看成高斯或正态分析处理), 是以非高斯信号的高阶量作为分析工具。
北京交通大学
信息科学研究所
引论
(5)自适应理论:1967年由B.Widrow提出,发展 迅速。它可以在缺乏信号和噪声先验统计知识的 情况下,实现均方意义下最佳滤波和预测。广泛 应用于通信中的自适应均衡、雷达和声纳的波束 形成、自适应噪声对消和自适应控制等方面。 (6)多维信号处理与分析:涉及多维变换、多维数 字滤波、多维谱估计,以及为实现多维信号处理 的器件结构及算法,如并行算法、流水线信号处 理以及人工神经网络等。
北京交通大学
信息科学研究所
1.1 概述
信号——信息的载体。可表现为时间或空间的函 数,例如语音信号表示成一维时间函数s(t),图 像为一个二维空间的灰度(亮度)函数g(x,y), 视频为二维空间加时间维的三维函数f(x,y,t)。 信号形式
模拟-时间幅度均为连续 连续信号 量化-时间连续,幅度离散
北京交通大学 匹配滤波-最大输出信噪比
信号瞬时功率 最大 噪声平均功率
信息科学研究所
相关接收机-最小均方误差准则下,互相关函数最 大 后验概率接收机-后验概率择大准则,即条件概率
p(s / x)最大,x(t ) 接收信号,s(t ) 理想信号
北京交通大学
信息科学研究所
ห้องสมุดไป่ตู้
引论
1 2 3 4 5
概述 离散时间信号
信号的Fourier变换
离散时间系统 Z变换
6
系统函数
北京交通大学
信息科学研究所
信号与信息处理——信息获取、处理(加 工)、存储、传输、显示的学科。 一级学科 二级学科
通信系统工程 信息通信工程 信号与信息处理
模式识别与智能系统 人机交互工程
取样-时间离散,幅度连续 离散信号-序列 数字-时间离散,幅度离散
北京交通大学
信息科学研究所
1.1 概述
信号的分类 除连续、离散两大类区分信号外,常见的分类 还有: 1)周期信号和非周期信号 若 x(n)=x(n±kN), k,N 均为正整数 x(n)为周期函数,否则为非周期函数 2)因果信号与非因果信号 当n<0时,h(n)=0, 则称h(n)为因果的,否则为非因果的。
北京交通大学
信息科学研究所
引论
自20世纪60年代后,随着八个方面的发展,形成了 现代数字信号处理的技术起步和大发展,这八个 方面是: (1)20世纪60年代的卡尔曼滤波理论。这一理论引 进状态空间法,突破了噪声必须是平稳过程的限 制。 (2)非参量检测与估计。发展了噪声特性基本未知 情况下的随机信号处理。卡蓬(J. Gapon)于1959年 提出非参量检测与估计问题,汉森(V.G.Hassan)在 70年代提出“广义符号检测法”。