当前位置:文档之家› 柔性直流输电技术

柔性直流输电技术

备注:IGCT和ETO的标称电流为峰值,约与IGBT的2000A相等
23
柔性直流输电柔采性用的直功流率输器电件功一率般容器量小较结大
电压等级在3300V以上,有3300V,4500V 通流能力在1000A以上,有1200A,1500A
良好的开通、关断特性,导通特性
开通关断过程尖峰电压和电流 开通、关断过程快速,限制开关损耗 导通压降低,限制通态损耗
电力电子技术已广泛用于电气工程学科, 其装置广泛用于柔性交直流输电、配电网 电能质量补偿与控制、高性能交直流电源 等领域
近年来,能源成为当今人类面临的重大问 题 ,电力电子装置是能源变换的功能性装置, 电力电子技术已成为能源变换与传输的关 键技术
13
交流和直流变换
AC
通过换流器(Converter)实现变换
压接式封装(Press-Pack)
器件故障后不会爆炸
故障后处于短路状态
结构上易于串联
散热性能好
封装难度大
供应商少
• 压接式封装可靠性更高
两种封装模式均有柔直应用 • ABB工程全部采用 StatkPak • 西门子 Transbay工程用PMI
IGBT
• 主要有以下几类
1)ABB StakPakTM IGBT,IGCT
器件串联
换流器输出电平数低,正弦度不高,谐波和损耗大 实现中存在多方面困难
串联器件静、动态均压技术 杂散参数控制、安装、运行维护
ABB的StakPakTMIGBT模块
32
两电平换流器的PWM控制
1
SPWM
0
1
脉冲
0
Vdc (Vdc ) 2
输出电压
(0) Vdc 2
33
器件直接串联的关键技术问题
开关过程中的动态均压
尽量选择参数一致的器件 强化结构设计,减小杂散参数 强制均压电路控制开通和关断过程
串联IGBT的动态均压
串联IGCT的动态均压
34
多电平换流器 多电平换流器的起始 – NPC换流器
– 中性点钳位NPC- Neutral Point Clamp – 实现三电平,电平数仍较低
压接式IGBT (IEGT)
门极驱动 导通压降 允许开关频率 电压/电流能力
晶闸管类器件
(GTO,IGCT) 电流控制,所需功率较大
低 低 较大
晶体管类器件
(IGBT,IEGT) 电压控制,所需功率较小
高 高 相对低
电网设备主要采用3300V及以上等级的高压IGBT(HV IGBT1)7
晶闸管(Thyristor)
36
三电平NPC换流器
两电平换流器
相 电 压
线 电 压
• 谐波性能得到改进

• 开关频率仍较高

37
37
多电平换流器 两电平
三电平
多电平
38
多电平换流器
+
E C1
-
+
E C2
-
O
+
E C3
-
+
E C4
-
Sa1p Sa2p
Sa3p Sa4p
VAO Sa1n Sa2n
Sa3n Sa4n
+
E C1
-
器件类型和封装
已经使用:压接式IGBT,模块式IGBT 其他器件:IGCT,ETO 压接式封装散热较好,损坏带来的影响较小,是发展趋势
备注:以上考虑的因素也适合电网其他电力电子设备,如
24
STATCOM等
目录
3
柔性直流换流器技术
25
基于全控器件的换流器
自换相换流器 Self-Commutated Converter
直流侧为电容,视作电压源
直流侧为电抗,视作电流源
全控器件 VSC (Voltage Source Converter)
主流方式
STATCOM, SSSC VSC-HVDC
全控器件 CSC (Current Source Converter)
较少采用
26
电压源换流器原理
脉冲宽度调制(Pulse Width Modulation, PWM)
• 变压器损耗大,占地大,逐渐淘汰
• 通过功率模块串联,实现多电平换 流器结构
• 成为电网应用的主流 30
器件串联
ABB公司的两电平换流器的串联IGBT阀,HVDC Light/SVC Light
基于ABB公司StakPakTM IGBT器件,器件不单独 出售
...
引自ABB参考资料
31
Thyristor
GTO
IGCT
ETO
• 由半控型到全控型
• 电压、电流等级逐渐提高(几kV/几kA)
• 开关速度由低到高(50/60Hz 到几kHz)
16
大功率开关器件的分类
大功率开关器件
晶闸管类
晶体管类
发射极关断晶闸管
GTO
ETO IGCT
可关断晶闸管 集成门极换相晶闸管
模块式IGBT
绝缘栅双极晶体管
强迫换相频率上百赫 兹。
运行性能比较
高压直流输电(LCC-HVDC)
柔性直流输电(VSC-HVDC)
换流器产生谐波量大, 噪音较大,需要配备交 流滤波器
需要无功补偿,最大 约为50%输送容量
换流站滤波器小组投 切过程较慢,且引起电 压波动
电网换相,需要交流 系统提供足够的短路容 量。
晶体管类(Transistor)
门极电流控制开通关断 关断时所需门极负脉冲电流较大 可承受开关频率较低 导通压降较低 所能实现的电压、电流等级较高
门极电压控制开通关断 门极驱动功率小,开关速度快, 可承受开关频率高 导通压降大 所能实现的电压、电流相对不高
18
DC
技术内容
关注点
14
功率器件的开通和关断过程
门极控制电压 导通电流
• 导通和关断由门极信号控制 • 导通和关断过程快速,但非
理想 • 导通和关断存在尖峰电流和
电压
集电极和发射 极电压
实际关断和导通波形
15
功率器件的发展
半控器件
• 开通可控 • 关断不可控
全控器件
• 开通可控 • 关断可控
IGBT/IEGT
2)日本东芝IEGT
3)英国西玛码PP IGBT
4)美国ETO
21
SCFM-短路失效模式
SCFM(Short-Circuit Failure Mode)
器件发生失效后器件处于短路 模式,并能够继续安全流过工 作电流,直至装置检修时更换
ABB StakPakTM IGBT在 SCFM方面的技术资料公开 比较充分,东芝IEGT也有 相关试验数据
命名情况:
• IEEE/CIGRE等国际组织:基于电压源型换流器的高压 直流输电技术(VSC-HVDC)
• ABB公司:产品注册商标“轻型直流输电(HVDCLight)”
• 西门子公司:产品注册商标“新型直流输电(HVDCPLUS)”
• 中国:柔性直流输电
常规直流输电:晶闸管技术,Line Commutated Converter(LCC-HVDC)
柔性直流输电与常规直流比较
高压直流输电(LCC-HVDC)
柔性直流输电(VSC-HVDC)
晶闸管
相位角控制
晶闸管通过脉冲信号控 制开通,但不能控制关断 ,电网换相。当承受电压 反向时,自动关断。
开关频率50/60 Hz
IGBT或其他可关断功 率器件
脉宽调节控制
可关断器件,可以通 过控制信号关断,完全 可控,自换相。
所需主开关器件数目 2×(N-1) 所需钳位电容数目 (N-1)/2
• 需要直流电压平衡控制 • 直流侧无法实现端对端连接 • 已是大容量STATCOM主要
柔性直流输电技术基本特征
目录
1
柔性直流输电的定义
2
柔性直流输电功率器件
3
柔性直流换流器技术
4
柔性直流输电换流器的控制
5
柔性直流输电系统
6
柔性直流输电技术的发展
2
目录
1
柔性直流输电的定义
3
柔性直流输电技术
VSC-HVDC
• 基于可关断器件和电压源换流器(Voltage Source Converter, VSC)的高压直流输电技术(VSC-HVDC),换流器自换向,能够 独立调节有功功率和无功功率,可控性和灵活性强,被誉为新一代 的直流输电技术
Vdc
0
27
正弦载波PWM ( Sine PWM, SPWM)
参考波
三角载波
载波频率fs:三角载波频率 参考波频率f1 载波比:fs/f1
换流器输出电压(基波) 波形与参考波一致
28
换流器四象限运行(有功和无功独立控制)
US
UL
UC
I
I
UUs S UL L
Uc UC > US时, Q 为容性
UI VSC
Power
+ V/mA
Electronics
• 高速 • 电子控制 • 低损耗 • 长寿命
=
kV/kA
V/mA
Power Electronics
12
电力电子技术的三要素
电力电子技术是应用于电力领域的电子技 术,使用电力电子器件(电力半导体器件) 对电能进行变换和控制的技术,变换的电 力从W级到百MW,甚至GW
I
Uc
C
δ
UL
Us P>0, 整流模式
相关主题