继电保护原理课程设计题目名称: 110KV输电线路距离保护设计系别:物理与电气工程系专业:电气工程及其自动化学号:姓名:指导老师:日期:继电保护原理课程设计任务书原始资料:如下图所示网络,系统参数为:kV E 3/115=ϕ, Ω=151G X , Ω=102G X , Ω=103G X , km L 441=,km L 403=,III t 1=,max .b K =km L C B 50=-,km L D C 30=-,km L E D 20=-,线路阻抗 km /4.0Ω, 85.0=I rel K ,8.0=IIrel K , 15.1=rel K , A I B A 300max =-, A I D C 200max =-, A I E D 150max =-, 5.1=ss K , 2.1=re K ,,32.2max .=b K ,s 5.01=III t 。
对线路L1、L3进行距离保护的设计。
(对2、9处进行保护设计)设计要求:本文要完成的内容是对线路的距离保护原理分析及整定计算,并根据分析和整定结果,合理的选择继电保护设备设备,并选择正确的安装方式,以确保安装设备安全、可靠地运行。
主要参考资料:[1] 杨启逊主编.微机型继电保护基础[M].北京:中国电力出版社,2009.[2] 贺家李主编.电力系统继电保护原理[M].北京:中国电力出版社,2010. [3] 张保会主编.电力系统继电保护[M].北京:中国电力出版社,2005.[4] 傅知兰. 电力系统电气设备选择与实用计算[M]. 北京:中国电力出版社,2004.[5] 姚春球. 发电厂电气部分[M]. 中国电力出版社,2007. [6] 孙丽华.电力工程基础.北京.机械工业出版社.目录1 设计原始资料 (1)题目 (1)设计要求 (1)2 继电保护方案设计 (1)主保护配置 (1)后备保护配置 (2)3 保护的配合及整定计算 (3)保护2处距离保护的整定与校验 (3)保护9处距离保护的整定与校验 (4)4 二次展开图的绘制 (6)保护测量电路 (6)绝对值比较原理的实现 (6)相位比较原理的实现 (7)保护跳闸回路 (8)5 总结 (9)参考文献 (10)1 设计原始资料题目如图1-1所示网络,系统参数为:kV E 3/115=ϕ, Ω=151G X , Ω=102G X , Ω=103G X , km L 441=,km L 403=,III t 1=,max .b K =km L C B 50=-,km L D C 30=-,km L E D 20=-,线路阻抗 km /4.0Ω, 85.0=I rel K ,8.0=IIrel K , 15.1=rel K , A I B A 300max =-, A I D C 200max =-, A I E D 150max =-, 5.1=ss K , 2.1=re K ,,32.2max .=b K ,s 5.01=III t 。
对线路L1、L3进行距离保护的设计。
(对2、9处进行保护设计)图1-1 110kV 网络接线图设计要求本文要完成的内容是对线路的距离保护原理分析及整定计算,并根据分析和整定结果,合理的选择继电保护设备设备,并选择正确的安装方式,以确保安装设备安全、可靠地运行。
2 继电保护方案设计主保护配置距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护,如图2-1为距离保护网络接线图。
距离保护的Ⅰ段图2-1 距离保护网络接线图瞬时动作,1t 是保护本身的固有动作时间。
保护1的整定值应满足: AB Iset Z Z <1.考虑到阻抗继电器和电流、电压互感器的误差,引入可靠系数 Irel K (一般取~,则AB Irel I set Z K Z =1.同理,保护2的Ⅰ段整定值为BC I rel I set Z K Z =2.如此整定后,距离Ⅰ段就只能保护线路全长的80%~90%,这是一个严重的缺点。
为了切除本线路末端10%~20%范围以内的故障,就需要设置距离保护第Ⅱ段。
距离Ⅱ段整定值的选择和限时电流速断相似,即应使其不超出下一条线路距离Ⅰ段的保护范围,同时带有高出一个t ∆的时限,以保证选择性,当保护2第Ⅰ段末端短路时,保护1的测量阻抗为[3]I set AB Z Z Z 1.1+=引入可靠系数 IIrel K (一般取,则保护1的Ⅱ段的整定阻抗为])85.0~8.0([8.0)(2.1.BC AB Iset AB II rel II set Z Z Z Z K Z +=+=后备保护配置为了作为相邻线路的保护装置和断路器拒绝动作的后备保护,同时也作为距离I 段与距离II 段的后备保护,还应该装设距离保护第III 段。
距离III 段:整定值与过电流保护相似,其启动阻抗要按躲开正常运行时的负荷阻抗来选择,动作时限还按照阶梯时限特性来选择,并使其比距离III 段保护范围内其他各保护的最大动作时限高出一个t ∆。
3 保护的配合及整定计算保护2处距离保护的整定与校验1、保护2处距离保护第I 段整定(1)2处的I 段的整定阻抗为Ω=⨯⨯==-2.104.03085.01z L K Z D C I rel I set(2) 动作时间s 0t =I (第I 段实际动作时间为保护装置固有的动作时间)。
2、保护2处距离保护II 段整定(1) 与相邻线路D-E L 距离保护I 段相配合,线路的II 段的整定Ω=⨯⨯+⨯⨯=+=--04.154.02085.04.0308.011)()(E D Irel D C II rel II set L z K z L K Z(2) 灵敏度校验距离保护II 段,应能保护线路的全长,本线路末端短路时,应有足够的灵敏度。
考虑到各种误差因素,要求灵敏系数应满足 25.1≥sen K253.1==-DC L IIset senZ Z K 满足要求(3) 动作时间,与相邻线路D-E L 距离I 段保护配合,则s t t t I II 5.0=∆+=它能同时满足与相邻保护以及与相邻变压器保护配合的要求。
3、保护2处距离保护III 段整定(1)整定阻抗:按躲开被保护线路在正常运行条件下的最小负荷阻抗min .L Z 来整定计算的,所以有ssre rel L III set K K K Z Z min.=Ω⨯⨯==79.2852.031109.0max min 1min .L L I U Z 已知 15.1=rel K , 2.1=re K , 5.1=ss K ,带入公式可得 Ω=⨯⨯=06.1385.12.115.179.285IIIset Z(2)灵敏度校验距离保护III 段,即作为本线路I 、II 段保护的近后备保护,又作为相邻下级线路的远后备保护,灵敏度应分别进行校验。
作为近后备保护时,按本线路末端短路进行校验,计算式为51.111==L III set senZ Z K满足要求作为远后备保护时,按相邻线路末端短路进行校验,计算式为93.64.0204.03006.138=⨯+⨯=+=--E D L III set sen Z Z Z K D C满足要求 (3)动作时间s t t t III III 112=∆+=保护9处距离保护的整定与校验1、保护9处距离保护第I 段整定 (1)线路L1的I 段的整定阻抗为Ω=⨯⨯==96.144.04485.011z L K Z Irel I set(2)动作时间s 0t =I (第I 段实际动作时间为保护装置固有的动作时间)。
2、保护9处距离保护第II 段整定(1) 与相邻线路C B L -距离保护I 段相配合考虑到分支系数br K 的影响,线路L1的II 段的整定阻抗为)(C B br II rel II set L z K z L K Z -+=111Ω=⨯=6.17444.01Z , Ω=⨯==16404.0313L z ZBC BC BC AB I I I Z Z Z I 5.0166.1716313=+=+=25.0===BCBC AB BC br I II I K 于是Ω=⨯⨯+⨯=08.46)504.026.17(8.0IIsetZ (2)灵敏度校验距离保护II 段,应能保护线路的全长,本线路末端短路时,应有足够的灵敏度。
50.24.04408.441=⨯==L II set sen Z Z K 满足要求(3) 动作时间,与相邻线路C B L -距离II 段保护配合,则s t t t I II 5.0=∆+= 它能同时满足与相邻保护以及与相邻变压器保护配合的要求。
3、线路L1距离保护第III 段整定(1)整定阻抗:按躲开被保护线路在正常运行条件下的最小负荷阻抗min L Z 来整定计算的,所以有ssre rel L III set K K K Z Z min.=Ω=⨯⨯==53.1903.031109.0max min 1min L L I U Z其中15.1=rel K , 2.1=re K , 5.1=ss K 于是可得Ω=⨯⨯=04.925.12.115.153.190IIIset Z(2)灵敏度校验距离保护III 段,即作为本线路I 、II 段保护的近后备保护,又作为相邻下级线路的远后备保护,灵敏度应分别进行校验。
作为近后备保护时,按本线路末端短路进行校验,计算式为36.44.08.5204.921=⨯==L III set sen Z Z K满足要求作为远后备保护时,按相邻线路末端短路进行校验,计算式为36.12032.212.2104.92max .1=⨯+=+=-C B b L III set sen Z K Z Z K满足要求(3)动作时间s t t t III III2319=∆+=4、三段式电流接线原理图如图3-1所示。
图3-1 三段式电流接线原理图4 二次展开图的绘制保护测量电路对于动作于跳闸的继电保护功能来说,最为重要的是判断出故障处于规定的保护区内还是保护区外,至于区内或区外的具体位置,一般并不需要确切的知道。
可以用两种方法来实现距离保护。
一种是首先精确地测量出m Z ,然后再将它与事先确定的动作进行比较。
当m Z 落在动作区之内时,判为区内故障,给出动作信号;当m Z 落在动作区之外时,继电器不动作。
另一种方法不需要精确的测出m Z ,只需间接地判断它是处在动作边界之外还是处在动作边界之内,即可确定继电器动作或不动作。
绝对值比较原理的实现如前所述,绝对值比较的一般动作表达式如式A B Z Z ≤所示。
绝对值比较式的阻抗元件,既可以用阻抗比较的方式实现,也可以用电压比较的方式实现。
该式两端同乘以测量电流m I ,并令A A m U Z I =,B B m U Z I =,则绝对值比较的动作条件又可以表示为A B U U ≤称为电压形式的绝对值比较方程。