线性代数(同济第5版)复习要点以矩阵为工具,以线性方程组问题为主线第一章 行列式基本结论1.行列式的性质(1) 互换行列式的两行,行列式变号.(2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面.(3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变. 2.行列式按行(按列)展开定理3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++=Λ2211 ),,2,1(n i Λ=3.克拉默法则 如果线性方程组的系数行列式不等于零,即0212222111211≠=nnn n n n a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛ那末,线性方程组有唯一的解,,,,2211DD x D Dx D D x n n ===Λ 主要计算计算行列式:1.数字行列式化为上三角形; 2.计算有规律的....n 阶行列式. 例1.(例7)计算行列式 3351110243152113------=D2.(例8)计算行列式 3111131111311113=D第二章 矩阵及其运算基本概念注意:1.矩阵可乘条件、乘法规则 2. 矩阵乘法不满足交换律BA AB ≠3.矩阵乘法有零因子出现:O B O A ≠≠,,但却有O AB = 4.消去律不成立:AC AB =,推不出C B =基本结论 1.转置 (i) A A T T =)( (ii) T T T B A B A +=+)( (iii) T T kA kA =)( (iv)T T T A B AB =)(2.方阵的行列式 (i) ||||A A T =(行列式性质1); (ii) ||||A A n λλ=; (iii)||||||B A AB =3.A 的伴随矩阵E A A A AA ||==**4.逆矩阵是初等矩阵可逆i sE E E E A E A nA R A A Λ21~)(0||=⇔⇔=⇔≠⇔推论 若E AB =(或E BA =),则1-=A B 方阵的逆阵满足下述运算规律:(i )若A 可逆,则1-A 亦可逆,且A A =--11)(. (ii )若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ(iii )若B A ,为同阶方阵且均可逆,则AB 亦可逆,且 111)(---=A B AB (iv )若A 可逆,则T A 亦可逆,且T T A A )()(11--= 基本计算用上面基本结论进行简单计算 主要计算求1-A :公式法*-=A A A ||11 基本证明用上面基本结论进行简单证明 例1. (例11)求矩阵的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A第三章 矩阵的初等变换与线性方程组基本结论线性方程组解的判定:1. n 元非齐次线性方程组b AX =b AX =有解⇔)()(B R A R =. 有解时,(记r B R A R ==)()()(1)n r =时,b AX =有唯一解 (2)n r <时,b AX =有无穷多解2.齐次线性方程组0=AX (0=AX 是b AX =的特殊情形)由于0=AX 永远满足)()(B R A R =,故0=AX 总有解(至少有零解)从而 (1)n r =时,0=AX 有唯一零解(2)n r <时,0=AX 有(无穷多)非零解 基本计算1.会求矩阵的秩2.会用矩阵的秩判别线性方程组有没有解,有解时,有多少解 3.会用初等变换求矩阵的逆初等变换)|()|(1-→A E E A 行;(包括求矩阵方程B AX =,用)|()|(1B A E B A -→行; 主要计算1. 设非齐次线性方程组b AX =,试问此线性方程组有解吗?若有解,有多少解? 2. 会用初等变换求矩阵的逆 例1.(例5)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=41461351021632305023A求矩阵A 的秩,并求A 的一个最高阶非零子式2.用初等变换求矩阵⎪⎪⎪⎭⎫⎝⎛=343122321A 的逆矩阵3.(例13)设有线性方程组⎪⎩⎪⎨⎧=+++=+++=+++,)1(,3)1(,0)1(321321321λλλλx x x x x x x x x 问λ取何值时,此方程组(1)有唯一解; (2)无解;(3)有无限多个解?并在有无限多解时求其通解.第四章 向量组的线性相关性基本概念1.向量组的线性相关性向量的线性组合、线性表示、向量组的线性相关与线性无关 向量组的等价 2.向量组的秩极大线性无关组、向量组的秩 3.向量空间向量空间的基的定义、基的求法、向量空间的维数、维数的求法 向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα4.线性方程组解的结构齐次线性方程组基础解系、非齐次线性方程组解的结构 基本结论 1.线性表出定理1 向量b 能由向量组A 线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,(21b B m αααΛ=的秩.定理2 向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,,(),(11l m B A ββααΛΛ=的秩. 即),()(B A R A R =.推论 向量组l B βββ,,,:21Λ与向量组m A ααα,,,:21Λ等价的充分必要条件是),()()(B A R B R A R ==定理3 设向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示,则),,,(),,,(2121m l R R αααβββΛΛ≤.2. 向量组的线性相关性定理4 向量组m ααα,,,21Λ线性相关的充分必要条件是它所构成的矩阵),,,(21m A αααΛ=秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)(定理5 (1)若向量组m A ααα,,,:21Λ线性相关,则向量组11,,,:+m m B αααΛ也线性相关. (2) m 个n 维向量组成的向量组,当维数n 小于向量个数m 时一定线性相关.(3) 设向量组m A ααα,,,:21Λ线性无关,而向量组βααα,,,,:21m B Λ线性相关,则向量β必能由向量组A 线性表示,且表示式是唯一的.3.向量组的秩定理6 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.推论 (最大无关组的等价定义)设向量组B 是向量组A 的部分组,若向量组B 线性无关,且向量组A 能由向量组B 线性表示,则向量组B 是向量组A 的一个最大无关组.4.解的结构(1)齐次线性方程组性质1 若21,ξξ为0=Ax 的解, 则21ξξ+也是0=Ax 的解. 性质2 若ξ为0=Ax 的解,k 为实数,则ξk 也是0=Ax 的解.0=Ax 的基础解系:r n -ξξ,,1Λ,通解是r n r n k k X --++=ξξΛ11定理7 设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组O AX =的解集S 的秩r n R S -=. (2)非齐次线性方程组性质3 设1η及2η都是b Ax =的解,则21ηη-为导出组0=Ax 的解.性质4 设η是方程b Ax =的解,ξ是方程0=Ax 的解,则ηξ+仍是方程b Ax =的解.b Ax =的通解是:*+++=--ηξξr n r n k k X Λ11 5.向量空间向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα基本计算1. 一般地,要判别一个向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b M 21β是否可由向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα线性表出?设s s k k k αααβ+++=Λ2211按分量形式写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ns ns n n s s s s b k a k a k a b k a k a k a b k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212*********,, (*)定理 β可由向量组s ααα,,,21Λ线性表出⇔(*)有解 2. 一般地,要判别一个向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα是否线性相关?设02211=+++s s x x x αααΛ按分量写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ns n n ss s s k a k a k a k a k a k a k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (**)定理 向量组s ααα,,,21Λ线性相关⇔齐次线性方程组(**)有非零解 3. ),,,(21m L αααΛ基和维数的求法 4.线性方程组解的结构(1)齐次线性方程组基础解系r n -ξξ,,1Λ(2)非齐次线性方程组解的结构的求法*+++=--ηξξr n r n k k X Λ11主要计算1.设矩阵A ,求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.设非齐次线性方程组b AX =,试问(1)此线性方程组有解吗?若有解,有多少解?(第三章内容)(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).(第四章内容) 基本证明向量的线性相关与线性无关、向量的组的等价、极大线性无关组、向量组的秩的证明 向量空间的基、维数的证明 基础解系、解的结构的证明 主要证明1.线性无关的证明2.B AB ⇔=0的列是0=AX 的解例 1.(例11)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A 求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.(例16)设非齐次线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+--2143214321432132130x x x x x x x x x x x x ,试问(1)此线性方程组有解吗?若有解,有多少解?(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).3.(例6) 已知向量组321,,ααα线性无关,211ααβ+=, 322ααβ+=, 133ααβ+=,试证向量组321,,βββ线性无关.(第五章 §1 定理1、§2 定理2)4.(例13)设0=AB ,证明:n B R A R ≤+)()(.第五章 相似矩阵及二次型基本概念 一.内积内积的定义:n n y x y x y x Y X +++=Λ2211],[向量的长度:22221],[n x x x X X X +++==Λ、当1=X 时,称X 为单位向量.向量的夹角:YX Y X ],[arccos=θ向量的正交:0],[=Y X 时,称向量X 与Y 正交 正交向量组、正交基、规范正交基 正交矩阵A :)(1T T A A E A A ==-即二.矩阵的特征值、特征向量 特征值、特征向量三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本结论 一.内积(i )],[],[X Y Y X =;(ii )],[],[Y X Y X λλ=(iii )],[],[],[Z Y Z X Z Y X +=+1.非负性:对任意X 都有 0≥X ; 当且仅当O X =时, 0=X 2.齐次性: X X ||λλ=; 3.三角不等式:Y X Y X +≤+ 定理1 若n 维向量 r ααα,,,21Λ是一组两两正交的非零向量,则r ααα,,,21Λ线性无关.二.特征值、特征向量定理2 设m λλλ,,,21Λ是方阵A 的m 个特征值,m p p p ,,,21Λ依次是与之对应的特征向量.如果m λλλ,,,21Λ各不相同,则m p p p ,,,21Λ线性无关.三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本计算1.向量的长度:22221],[n x x x X X X +++==Λ2.向量的夹角的求法:YX Y X ],[arccos =θ3.正交化方法: 设r ααα,,,21Λ线性无关111122221111222231111333111122211],[],[],[],[],[],[],[],[],[],[],[],[--------=--=-==r r r r r r r r r ββββαββββαββββααβββββαββββααβββββααβαβΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ4.单位化:r rr e e e ββββββ1,,1,1222111===Λ5.特征值的求法、特征向量的求法6.对称阵的对角化方法7.求正交变换化二次型为标准形 例1.(例2) 设⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014,131,121321ααα,试用施密特正交化过程把这组向量规范正交化。