当前位置:文档之家› 镁合金在汽车上的应用简介

镁合金在汽车上的应用简介

镁合金在汽车上的应用简介节能、环保、安全是当今世界汽车工业关注的主要话题,汽车轻量化技术是实现这一目标的重要途径。

研究表明,车重每减轻10%,油耗可降低6%~8%[1]。

车身质量占整车质量的40%,所以车身的轻量化对于整车的轻量化起着举足轻重的作用。

汽车轻量化的实现主要有二种途径:一是优化汽车结构设计;二是使用轻量化材料。

前者经过不断研究开发,日趋完善,空间已相对狭窄。

后者随着科学技术的发展和新材料的不断涌现,为汽车轻量化开辟了广阔的空间。

轻量化材料是指可用来减轻汽车自重的材料,可分为两大类:一类是高强度材料,如高强度钢板;另一类是低密度的轻质材料,如铝合金、镁合金、塑料和复合材料等。

轻量化材料对汽车工业的可持续性发展具有重要意义,它不仅关系到车辆的节能、减排、安全、成本等诸多方面,而且汽车轻量化材料的应用对世界能源、自然资源和环境保护具有深刻的影响,它已成为汽车材料技术发展的主导方向。

国外近几年在汽车上的应用,以年平均25%的速度快速增长。

据资料介绍,汽车上有60多种零部件可以采用镁合金生产,我国经过“十五”和“十一五”科技攻关,也有20余种汽车零部件可以采用镁合金生产。

如仪表盘骨架、座椅骨架、进气歧管、赛车车轮、支架、转向盘骨架、缸体、壳体类零件等,目前镁合金件正向着大型集成化发展。

一、镁合金的特点镁合金是一种轻合金,熔点为650℃。

金属镁及其合金是工程应用中最轻的金属结构材料,纯镁的密度仅为1.738g·cm-3,而常规镁合金如AZ91密度也只是1.81g·cm-3,约为铝的2/3,钢的1/4,接近工程塑料的密度[2],因此将镁合金应用在汽车领域中可极大地减轻结构件的质量。

镁在元素周期表中属ⅡA族碱土金属,元素符号Mg,英文名称Magnesium,原子序数12,原子量24.31,常见化合价+2,其电子壳层结构为1s22s22p63s2,熔点648.8℃,沸点1090℃,原子半径0.172nm,离子半0.072(+2)nm。

镁晶体为密排六方结构,配位数为12,25℃时晶格常数为a=0.3202nm,c=0.5199nm,晶胞的轴比c/a=1.6237,原子间d1=0.31906、d2=0.32030。

滑移系数较小,冷变形较困难,当温度升高到250℃以上时,镁合金的变形较容易,同时具有较好的可塑性。

高纯镁具有良好物理性能以及耐腐蚀性能,但是由于其力学性能差,生产纯镁的生产成本高,在工业生产和结构使用中纯镁受限,所以在纯镁中加入:铝、锌、锆、锰及微量元素镍等,它们在镁合金中起到固溶强化、沉淀强化、细晶强化、提高耐热性等作用,可以作为结构材料广泛应用。

二、镁合金在汽车板的应用优势与其它金属相比镁合金具有很多性能优势:(1)密度小,常用金属中最轻的金属例如AZ91镁合金的密度是1.81g·cm-3,约为铝的2/3,锌的1/4,不到钢或铸铁的1/4,接近工程塑料的密度。

对于含30%玻璃纤维的聚碳酸酯复合材料来说,镁的比重也不超过它的10%。

因此镁合金的使用可有效减轻汽车的质量。

表一为几种金属的密度对比(2)比强度高抗拉强度、屈服强度、伸长率与铝合金铸件相当。

从设计者的立场考虑,密度小的金属若不具有高强度,将没有意义。

实验显示,镁合金的比强度比铝合金和钢高。

因此在不降低零部件强度条件下,镁合金铸件比铝铸件的重量减轻大约25%。

几种常用的镁合金性能见下表2。

表2 常用镁合金的性能(3)热传导性好具有良好的耐腐蚀性能、电磁屏蔽性能、防辐射性能,可进行高精度机械加工,且热传导性好,虽然镁合金的导热系数不及铝合金,但是比钢高近1倍,比塑料材料高10倍。

因此镁合金已广泛用于压铸汽车轮毂上,可有效散发制动摩擦热量,提高制动稳定性。

(4)良好的焊接和铸造性能镁合金的熔点、比热容和相变潜热比铝合金低,融化耗能较少,固化速度快,动力粘度低具有良好的压铸成形性能和尺寸稳定性,压铸件生产周期比铝合金短,易形成薄壁结构件,压铸件壁厚最小可达0.15 mm,镁与铁的亲和力小,固溶铁的能力低,不易粘模,铸模寿命比生产铝合金高2,3倍,适合制造各类汽车压铸件。

(5)对振动、冲击的吸收性能好具有良好的阻尼系数,镁合金对振动能量的吸收能力强,消震性能优于铝合金和铸铁,用于驱动和传动部件上可以降低噪声,用于座椅、轮圈、方向盘可以减少振动,在汽车发出碰撞后很好地吸收冲击能量,提高汽车的安全性和舒适性。

(6)抗凹陷性能好镁合金与其他金属相比抗变形能力强,由冲击而引起的凹陷小于其它金属。

(7)易于机械加工镁合金非常易于机械加工,在无冷却液、无润滑剂的情况下能实现高负荷加工,得到光洁的加工面,衡量机械加工的指标之一是动力消耗量。

表3是以镁合金为1的情况下,各种合金机械加工时的动力消耗量比较。

由表3可知镁合金具有良好的机械加工性。

(8)易于回收再生。

回收的镁合金可直接熔化再进行浇铸,且不降低其力学性能。

镁合金同其它金属相比,熔点低,比热小,在再生溶解时所消耗的能源是新材料制造所消耗能源的4%。

此外,镁合金的电磁波屏蔽性好,外表美观。

更为重要的是,镁是自然界中分布最广的元素之一,约占地壳质量的 2.35%,列第八位,仅次于O、 Si、Al、Fe、Ca、 Na、K,由于镁本征化学性质活泼,在自然界中主要以化合物的形式存在,在陆地上的含量为 1.930%,海水中的含量为0.42%,达2.1×1015t。

我国是世界上镁矿资源最富有的国家。

主要含镁资源包括菱镁矿:资源总量31.45亿t,居世界首位;白云石:资源总量约40亿t;盐湖卤水:柴达木盆地镁盐保有储量48.15亿t[4]。

丰富的镁矿资源为我国镁产业的可持续发展提供了最可靠的资源保障。

相反,铁矿及铝矿资源则相对贫乏一些。

已探明世界储量的铁矿石与铝土矿的可采储量保障年限只有约70年和50年。

我国的铁、铝资源更加贫乏,储量仅占世界比例18.7%和2.3%,可采储量保障年限分别在30年左右和10年以下。

从污染角度讲,钢铁的质量密度大,消费量大,其制品在使用过程中易造成高能耗和污染排放;铝虽为轻质材料,但仅铝电解一个工艺环节的电耗就占到整个有色工业的90%,并也间接导致高污染排放。

而被冠以“21世纪绿色结构材料” [5]美誉的金属镁在这些方面则相对好一些。

据中国有色金属工业协会数据统计,2008年1-8月份全国共产原镁44.89万吨,同比增长16.8%。

需要说明的是,由于受到国际各种金属材料的影响,刚才价格的上升,使镁合金成本方面的劣势进一步减小,镁合金的综合优势进一步明显。

因此,对于盛产镁合金资源的中国来说,中高档轿车采用镁合金制作汽车零件也就更加彰显优势了。

三、镁合金的新发展尽管镁合金在汽车上的应用具有其它金属不可比拟的优点,但在过去几十年中,由于价格和生产技术方面的原因,镁合金一直未得到广泛应用,近年来随着镁价格逐渐下降,使镁合金在汽车中全面应用逐渐成为可能,世界范围内各主要汽车生产国不断加大在镁合金开发和应用技术研究上的投入,从而一些新技术相继问世。

1. 耐蚀镁合金镁合金的耐蚀性的问题可通过2个方面来解决:○1严格限制镁合金中的 Fe、Cu、Ni等杂质元素的含量。

例如,高纯AZ91HP镁合金(Mg、Al、Zn)在盐雾试验中的耐蚀性大约是AZ91C镁合金(Mg、Al、Zn)的100倍,超过了压铸铝合金A380(Mg、Al、Zn)比低碳钢还要好。

○2对镁合金进行表面处理。

根据不同的耐蚀性要求,可选择化学表面处理,阳极氧化处理、有机物涂覆、电镀、化学镀、热喷涂等方法处理。

例如,经化学镀的镁合金,其耐蚀性超过了不锈钢。

2 耐热镁合金耐热性差是阻碍镁合金广泛应用的主要原因之一。

当温度升高时,镁合金的强度和强蠕变性能大幅度下降,使它难以作为关键零件(如发动机零件)材料在汽车工业中广泛应用。

耐热镁合金的研究与开发主要围绕新合金研究和改善现有镁合金的高温性能两个方面进行。

Mg-Al-Si(AS)系合金是德国大众汽车公司开发的压铸镁合金。

当在175℃时,AS41合金的蠕变强度明显高于AZ91(Mg、Al、Zn)和AM60(Mg、Al、Zn)合金。

20世纪80年代,国外致力于利用Ca来提高镁合金的高温拉强度和蠕变性能表现良好。

日本东北大学采用快速凝固法制成的具有100-200nm晶粒尺寸的高强镁合金,强度为超级铝合金的3倍,并具有超塑性、高耐热性和高耐蚀性。

3 阻燃镁合金镁合金在熔炼烧铸过程中易发生剧烈的氧化燃烧。

上海交通大学轻合金精密成型国家工程中心通过同时加入几种元素,开发了一种阻燃性能和力学性能均良好的轿车用阻燃镁合金,成功进行了轿车变速箱盖的工业试验。

4 高强高韧镁合金现有镁合金的常温强度和塑韧性均有待进一步提高。

在Mg-Zn和Mg-Y合金中加入Ca、Zr可显著细化晶粒,提高其抗拉强度和屈服强度;加入Ag和Th能够提高Mg-稀土-Zr合金的力学性能,如含有Ag的QE22A合金具有较高的室温拉伸性能和抗蠕变性能。

5 变形的镁合金虽然目前铸造镁合金产品用量大于变形镁合金,但经变形的镁合金材料可获得更高的强度、延展性及更多样化的力学性能,可满足不同场合结构件的使用要求。

因此开发变形镁合金具有长远的发展趋势。

美国成功研制了各种系列的变形镁合金产品。

通过挤压和热处理得到的Zk60(Mg、Al、Zn)高强变形镁合金,其强度及断裂韧性相当于失效状态的Al7075(Mg、Al、Zn)或Al7475(Mg、Al、Zn)合金。

而采用快速凝固(RS)、粉末治金(PM)和热挤压工艺开发的Mg-Al-Zn系EA55RS变形镁合金,成为迄今报到的性能最佳的镁合金,其性能不但超过常规镁合金,比强度甚至超过7075铝合金(Mg、Al、Zn),并具有超塑性(300℃,436℃),腐蚀速率与2024-T6合金(Mg、Al、Zn)相当,成为先进镁合金材料的典范。

日本最近开发出超高强度的Mg-Y系变形镁合金材料,可冷压加工的镁合金板材。

6 镁合金成形技术镁合金成形分成变形和铸造两种方法,当前主要使用铸造成形工艺。

压铸是应用最广泛的镁合金成形方法。

近年来发展起来的镁合金压铸新技术有真空压铸和充氧压铸,前者已成功生产出AM60B镁合金(Mg、Al、Zn)汽车轮毂和方向盘,后者已用于生产汽车上的镁合金零件。

镁合金半固态触变铸造(Thixo-Molding)成形新技术近年来受到美国、日本和加拿大等国的重视。

与传统压铸相比,触变铸造无需熔炼、浇铸及气体保护。

生产过程更清洁、安全和节能。

但目前可供使用的半固态铸造镁合金材料相对选择性小,需要进一步发展适用于半固态铸造镁合金的镁合金系列。

其它正在发展的镁合金铸造成形新技术有:镁合金消失模铸造、挤压铸造、低压铸造结合法、挤压铸造、流变铸造结合法和真空倾转法差压铸造等。

相关主题