题目:变电站防雷接地技术内容摘要变电所是电力系统重要组成部分,因此,它是防雷的重要保护部位。
如果变电所发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。
变电所是电力系统重要组成部分,因此,它是防雷的重要保护部位。
如果变电所发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。
关键词:变电所;防雷保护;接地装置目录内容摘要 (I)1 绪论 (1)1.1课题研究的意义 (1)1.2 变电站防雷接地的研究背景 (1)1.3 本次论文的主要工作 (1)2 变电站的防雷保护 (2)2.1 变电站的直击雷保护 (3)2.2 变电站的侵入波保护 (3)2.3 变电站的进线段保护 (4)2.4 避雷针与避雷线的保护范围的计算 (4)2.5 变电站差动保护 (4)3 变电站的防雷接地 (6)3.1 接地概述 (6)3.2 接地电阻 (6)3.3 变电所接地装置 (7)3.4 变电所接地的原则 (7)3.5 降低变电所接地装置工频接地电阻的措施 (7)4 变电所防雷接地设计实例 (9)4.1 变电所的规模 (9)4.2 变电所位置的自然条件 (9)4.3 避雷针的设置及防雷保护校验 (9)4.4 接地装置的设置 (16)5 结论 (17)参考文献 (1)附录·······································································错误!未定义书签。
1 绪论1.1 课题研究的意义雷电一直是影响电力系统安全稳定运行的重要原因,对于处在雷电频发地区的电力设备来说,防雷保护就显得至关重要。
我国是雷电活动十分频繁的国家,全国有21个省会城市雷暴日都在50天以上,最多可达134天。
据不完全统计,我国每年因雷击造成人员伤亡达3000~4000人,损失财产50~100亿元人民币。
随着社会经济发展和现代化水平的提高,特别是信息技术的快速发展,雷电灾害程度和造成的经济损失及社会影响也越来越大1.2 变电站防雷接地的研究背景长期以来,国内外学者在雷电活动规律、雷击线路物理过程方面做了大量的研究工作,建立起较为完善的输电线路防雷理论体系。
雷电流幅值、波形、地闪密度以及线路落雷次数对于分析线路防雷性能极为重要。
上世纪70年代中期发展起来的基于磁场定位和时差定位原理的雷电定位系统,使雷电测量更为准确和及时。
目前,雷电定位系统组成的雷电监测网络已在我国和北美、日本、韩国、欧洲等世界许多国家得到运用,它能帮助电力部门实现故障定位、分类、准确计算地面落雷密度等雷电参数,但雷电数据分散性较大,需要长期统计雷电数据。
但总体上变电站的防雷安全形势不容乐观,主要表现在:一是社会公众防雷安全意识不强,对雷电灾害的危害性认识不够,存在侥幸心理;二是随着社会经济的发展,雷电灾害的危害途径增多,防雷安全理念已发生巨大变化,不仅要有传统的防御直击雷,还要防感应雷的新时代,而许多措施仍然停留在传统的防雷阶段。
变电站是电力系统防雷的重要保护设施,如果发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活。
为保证电力系统的安全运行,电力系统应根据被保护物的重要性和危险程度的不同,对于直接雷、雷电感应、雷电侵入波应采取相应的防雷保护措施。
因此要求变电站的防雷保护措施必须十分可靠。
1.3 本次论文的主要工作本次论文主要研究110KV变电站的防雷接地部分的设计。
2 变电站的防雷保护变电站遭受雷击的主要原因:雷电是雷云层接近大地时,地面感应出相反电荷,当电荷积聚到一定程度,产生云和云之间以及云和大地之间放电,迸发出光和声的现象。
供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电站雷击有两种情况:一是雷直击于变电站的设备上,二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站。
其具体表现形式如下:(1)直击雷过电压。
雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。
(2)感应过电压。
当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。
(3)雷电侵入波。
架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站,是导致变电站雷害的主要原因,若不采取防护措施,势必造成变电站电气设备绝缘损坏,引发事故。
防雷措施总体概括为2种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。
防雷保护措施应根据现场常见的雷击形式、频率、强度以及被保护设施的重要性、特点安装适宜的保护装置。
雷电放电特征分析在众多的闪电类型中, 其中云地闪(俗称落地雷)与人类的关系最密切, 因此将其作为分析的对象。
在对地的雷电放电(即云地闪)中, 最常见的雷电是自雷云向下开始发展先导放电的。
据统计, 无论放电的次数, 还是放电的电荷量, 约90% 的雷是负极性的。
雷电是一种恐怖而又壮观的自然现象,这不仅在于它那划破长空的耀目闪电和令人震耳欲聋的雷鸣,重要的是它给人类生活带来巨大的影响。
且不说雷电促成有机物质的合成可能在地球生命起源中占有一定的地位,以及雷电引起的森林火灾可能启发了远古人类对火的发现和利用;仅在现代生活中,雷电威胁人类的生命安全,常使航空、通讯、电力、建筑等许多部门遭受破坏,就一直引起人们对于雷电活动及其防护问题的关注。
雷电放电是一种气体放电现象,由其引起的过电压,叫做大气过电压。
它可以分为直击雷过电压和感应雷过电压两种基本形式。
雷电放电是由于带电荷的雷云引起的。
雷云带电原因的解释很多,但还没有获得比较满意的一致的认识。
一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升,进入稀薄的大气层冷凝的结果。
强烈的上升气流穿过云层,水滴被撞分裂带电,轻微的水沫带负电,被风吹得较高,形成一些局部带正电的区域。
雷云的底部大多数是带负电,它在地面上会感应出大量的正电荷。
这样,在带有大量不同极性或不同数量电荷的雷云之间,或者雷云和大地之间形成了强大的电场,其电位差可达数兆伏甚至数十兆伏。
随着雷云的发展和运动,一旦空间电场强度超过了大气游离放电的临界电场强度(大气中约30kV/cm,有水滴存在时约10kV/cm)时,就会发生云间或对大地的火花放电;放出几十乃至几百安的电流;产生强烈的光和热(放电通道温度高达15000℃至20000℃),使空气急剧膨胀振动,发生霹雳轰鸣。
这就是闪电伴随雷鸣,叫做雷电之故。
大多数雷电发生在雷云之间,它对地面没有什么直接影响。
雷云对大地的放电虽然只占少数,但是一旦发生就有可能带来严重的危险。
这正是我们主要关心的问题。
2.1 变电站的直击雷保护防止雷闪直接击在建筑物、构筑物、电气网络或电气装置上。
直击雷防护技术主要是保护建筑物本身不受雷电损害,以及减弱雷击时巨大的雷电流沿着建筑物泄入大地的过程中对建筑物内部空间产生影响的防护技术,是防雷体系的第一部分2.2 变电站的侵入波保护变电站对侵入波的防护的主要措施是在其进出线上装设阀型避雷器,避雷器装设在被保护物的引入端,其上端接在线路上,下端接地,一般安装在变电站母线上。
阀型避雷器的基本元件为火花间隙和非线性电阻。
目前,SFZ系列阀型避雷器,主要用来保护中等及大容量变电站的电气设备。
FS系列阀型避雷器,主要用来保护小容量的配电装置。
变电站中限制侵入波的主要设备是避雷器,它接在变电站的母线上,与被保护设备相并联,并使所有设备受到可靠保护。
2.3 变电站的进线段保护要限制流经避雷器的雷电电流幅值和雷电波的波度,就必须对变电站进线实施保护。
当线路上出现过电压时,将有行波导线向变电站运动,起幅值为线路绝缘的50%冲击闪络电压,线路的冲击耐压比变电站设备的冲击耐压要高很多。
因此,在接近变电站的进出线上加装避雷线是防雷的主要措施。
如不架设避雷线,当遭受雷击时,势必会对线路造成破坏。
变电站进线保护是在靠近变电站出线架1~2km 线路上所采取的可靠的防雷保护措施,变电站进线保护具体措施视变电站的线路情况而定。
2.4 避雷针与避雷线的保护范围的计算雷击只能通过拦截导引措施改变其入地路径。
接闪器有避雷针、避雷线。
小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。
2.5 变电站差动保护主变的差动保护是主变的主保护之一。
它的可靠性对主变安全运行和系统供电可靠性起着极为重要的作用。
变压器的差动保护与其它差动保护一样,都是利用比较被保护原件各端电流的幅值和相位的原理构成。
变压器差动保护是利用比较变压器两侧电流的幅值和相位的原理构成的。
把变压器两侧的电流互感器按差接法接线,在正常运行和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作;在内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。
变压器的差动保护都是利用比较被保护原件各端电流的幅值和相位的原理来进行保护判断、动作的。
并不分什么差流、差压(没听说有差压)为了防止变压器受其它因素的影响而误动作,随着技术的发展,差动保护又出现比率制动特性差动保护、双斜率比例差动保护、小波变换原理等等新的差动保护,但归根到底都是在差动保护这个基础上的发展。
雷闪直接对电气设备放电引起的过电压称为直击雷过电压,其极性与雷电流的极性相同为负。
直击雷过电压的幅值可达上千千伏以上,很显然,大多数击于输电线或电气设备上的都会产生闪络,可能导致火灾或爆炸。
但对于高压配电线路,往往受厂房和高建筑物的屏蔽,所以遭受直击雷的几率较小。