什么叫变频器?变频器基本工作原理一.什么叫变频器?变频器又称为变流器(Inverter),它是将电压值固定的直流电,转换为频率及电压有效值可变的装置,在工业上被广泛使用,如不断电系统、感应电动机与交流伺服电动机的调速驱动等。
变频器之功能为将直流输入电压转换为所需之大小与频率之交流输出电压。
若其直流输入电压为定值,则称为电压源型变频器(Voltage Source Inverter, VSI);若直流输入电流维持定值,则称为电流源型变频器(Current Source Inverter, CSI)。
二.变频器基本原理变频器它的输出电力控制方法有PAM方式与PWM方式两种。
PAM(Pulse Amplitude Modulation),由电源电压变换振幅而进行控制输出功率的方式,所以在变频器部位,只有控制频率,变流器控制输出电压。
在闸流体变频器场合,因转流时间为100~数百μs,闸流体高频切换很难,其次是因为PWM控制困难,在该变频器部位的控制频率采用PAM 方式,如图 1.1所示依PAM电压调整时之输出电压波形,电压高和电压低的情形。
图 1.1 PAM电压调整脉波宽度调变(Pulse-width Modulation, PWM),在输出波形中作成多次之切割,经由改变电压脉波宽度而达成输出电压之改变,如图1.2所示。
依PWM变频器的电压调整原理,图(A)为三角载波与正弦波型的信号波。
图(B)和图(C)为所对应之波宽调变波形及输出信号波之振幅。
振幅相同、脉波宽度不同、可获得调整变化之正弦波的输出波形。
图 1.2 PWM电压调整图1.3为三相变频器主电路之基本结构,其中前级由三相全波整流器组成,三相电源由L1 L2 L3输入,其直流输出电压经过电感L及电容C之滤波后,可获得几近无涟波之直流电压VDC。
变频器之后级由六个电力电子组件组成,其输出端为U V W,此六个组件的导通与关闭时间可利用正弦式脉波宽度调变(Sinusoidal Pulse-width Modulation, SPWM)技术加以控制,SPWM是由一正弦波参考信号与较高频三角形载波相比较而产生,同图1.2所示,参考信号之频率决定变频器输出电压频率,而参考信号之峰值则控制了输出电压之有效值。
而每半周期之脉波数目P则依据载波频率而定。
SPWM方式可消除输出电压中所有低于或等于2P-1阶之谐波。
图1.3 三相变频器主电路结构在理想的情况下,图1.3同相输出之上下开关,其 PWM 波形应是互补的,也就是上开则下关,上关则下开。
但由于功率组件的截止(turn-off)时间,通常大于导通(turn-on)时间,因此必须于上下开关的PWM 讯号之间加入一段延迟时间,以防止短路的情况发生。
此延迟时间的设定主要根据的功率组件的截止时间而定,通常设为截止时间的2~3倍。
三.变频调速系统的效率与损耗1、变频器的效率交-直-交变频器的损耗由三部分组成,整流损耗(包括电容损耗)40%:逆变损耗50%;控制回路损耗10%。
前两项随变频器的容量、负荷、结构不同而变化,控制回路损耗与其它因素无关。
额定状态运行时,效率84.6%~96%,功率越大效率越高,高压变频器效率可达98%。
变频器与各种环境条件的关系: IPCPLCRS232CRS485SB41变频器一 变频器二上位机PLC 控制方案2、输出端连接的电缆长度有限制。
对于一些特殊应用场合,如环境温度高,海拔大于1000米等。
(1)变频器与海拔高度的关系:1000米以上,每升高100m降容1%,最大不超过4000m(2)变频器与环境温度的关系:40度时因温差减小造成散热条件变差,高于40度时,每升高一度时降容2.5%,最高环境温度不应超过55度。
四.如果要正确的使用变频器, 必须认真地考虑散热的问题。
变频器的故障率随温度升高而成指数的上升。
使用寿命随温度升高而成指数的下降。
环境温度升高10度,变频器使用寿命减半。
因此,我们要重视散热问题啊!发热量的近似值=变频器容量(KW)×55 [W],变频器的发热主要来自于IGBT, IGBT的发热有集中在开和关的瞬间。
因此开关频率高时自然变频器的发热量就变大了。
有的厂家宣称降低开关频率可以扩容,就是这个道理。
采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。
采用变频器传动可以平滑地起动(起动时间变长)。
起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
--软启动五.改变频率和电压是最优的电机控制方法异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
如果仅改变频率,电机将被烧坏。
特别是当频率降低时,该问题就非常突出。
为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压。
V/f模式是什么意思?频率下降时电压V也成比例下降。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从400V改变到约200V。
给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”。
其他:变频器干扰常见途径1.1、空中辐射方式以电磁波的方式在空中传播;1.2、线路传播方式主要通过电源、稳压器网络传播;1.3、线间感应方式电感产生的电磁感应或电容产生的静电感应通过线间感应的方式传播。
二、变频器干扰源的排除2.1、高频大功率的直流电焊机应远离变频器。
电焊机自身的接地应良好。
2.2、电磁铁的通断触点应加装RC突波吸收器。
2.3、与变频器装在同一电柜中的接触器,要剔除劣质品。
要选择开关低噪声,灭弧效果好的产品。
必要时也要加装RC突波吸收器。
2.4、供电电源阻抗要低,以免附近有上百千瓦电器的启停,造成变频器输入电压产生过高的瞬间突变。
2.5、供电电源的相电压要平恒,以免导致220V单相输入的变频器在欠压或过压的状态下工作。
2.6、对用户厂的自发电系统,要求输出电源电压不要忽高忽低。
要避免突变,要稳定。
三、变频器抗干扰的常用措施3.1、变频器的E端要与控制柜及电机的外壳相连,要接保安地,接地电阻应小于100Ω,可吸收突波干扰。
3.2、变频器的输入或输出端加装电感式磁环滤波器。
以康沃变频器为例,平行并绕3-4圈,有助于抑制高次谐波(此方法简单易行,价格低廉)。
若需进一步加强抗干扰效果,可选康沃变频器专用的符合EMC标准的滤波装置(康沃变频器使用手册有规格提供)。
3.3、上述磁环滤波器还可根据现场情况加绕在变频器控制信号端或模拟信号给定端的进线上。
3.4、装有变频器的电控柜中,动力线和信号线应分开穿管走线,金属软管应接地良好。
3.5、模拟信号线要选用屏蔽线,单端在变频器处接仿真地。
3.6、还可通过调整变频器的载频来改善干扰。
频率越低,干扰越小,但电磁噪声越大。
3.7、RS485通讯口与上位机相连一定要采用光电隔离的传输方式,以提高通信系统的抗干扰性能。
3.8、外配计算机或仪器、仪表的供电要和变频器的动力装置供电分开,尽量避免共享一个内部变压器。
3.9、在受干扰的仪表设备方面也要进行独立屏蔽,市场上的温控器、PID调节器、PLC、传感器或变送器等仪表,都要加装金属屏蔽外壳并与保安地相连。
必要时,可在此类仪表的电源进线端加装上述的电感式磁环滤波器。
变频器控制回路的抗干扰措施由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰,造成变频器自身和周边设备无法正常的工作。
因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
1)变频器的基本控制回路同外部进行信号交流的基本回路有模拟与数字两种:①4~20mA电流信号回路(模拟);1~5V/0~5V电压信号回路(模拟)。
②开关信号回路,变频器的开停指令、正反转指令等(数字)。
外部控制指令信号通过上述基本回路导入变频器,同时干扰源也在其回路上产生干扰电势,以控制电缆为媒体入侵变频器。
2)干扰的基本类型及抗干扰措施。
①静电耦合干扰:指控制电缆与周围电气回路的静电容耦合,在电缆中产生的电势。
措施:加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不大明显。
在两电缆间设置屏蔽导体,再将屏蔽导体接地。
②静电感应干扰:指周围电气回路产生的磁通变化在电缆中感应出的电势。
干扰的大小取决干扰源电缆产生的磁通大小,控制电缆形成的闭环面积和干扰源电缆与控制电缆间的相对角度。
措施:一般将控制电缆与主回路电缆或其它动力电缆分离铺设,分离距离通常在30cm以上(最低为10cm),分离困难时,将控制电缆穿过铁管铺设。
将控制导体绞合,绞合间距越小,铺设的路线越短,抗干扰效果越好。
③电波干扰:指控制电缆成为天线,由外来电波在电缆中产生电势。
措施:同1和2所述。
必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用的铁箱要接地。
④接触不良干扰:指变频器控制电缆的电接点及继电器触点接触不良,电阻发生变化在电缆中产生的干扰。
措施:对继电器触点接触不良,采用并联触点或镀金触点继电器或选用密封式继电器。
对电缆连接点应定期做拧紧加固处理。
⑤电源线传导干扰:指各种电气设备从同一电源系统获得供电时,由其它设备在电源系统直接产生电势。
措施:变频器的控制电源由另外系统供电,在控制电源的输入侧装设线路滤波器;装设绝缘变压器,且屏蔽接地。
⑥接地干扰:指机体接地和信号接地。
对于弱电压电流回路及任何不合理的接地均可诱发的各种意想不到的干扰,比如设置两个以上接地点,接地处会产生电位差,产生干扰。
措施:速度给定的控制电缆取1点接地,接地线不作为信号的通路使用。
电缆的接地在变频器侧进行,使用专设的接地端子,不与其它接地端子共用,并尽量减少接地端子引接点的电阻,一般不大于100d。
3)其它注意事项①装有变频器的控制柜,应尽量远离大容量变压器和电动机。