电催化与有机废水处理
电催化氧化技术的应用
除石墨、Pt、PbO2等析氧过电位 较高的电极材料外,近年来还发现,一 些掺杂半导体电极具有较高的析氧、 析氯过电位,可防止有毒卤代物生成 而造成二次污染。
影响电催化氧化效率的因素
(1)催化电极本身的催化活性 (2)反应体系的PH值 (3)反应体系的电压
影响电催化氧化效率的因素
电催化氧化技术的优点
电催化氧化法的优点:
过程中产生的· OH无选择地直接 与废水中的有机物反应,将其降解为二 氧化碳、水和简单有机物,没有或很少 产生二次污染
电催化氧化技术的优点
电催化氧化法的优点:
能量效率高,一般常温常压下即可进行 既可单独处理,又可作为前处理
电催化氧化技术的应用
电催化氧化技术 目前广泛应用于 降解水中所含的
处理水中醇类有机物
在含醇废水中,以不溶性PbO2作阳极,投 入1mol/L的NaOH作电解质,当电流密度为 0.19~0.22A/cm2时电解3h,可使废水中的 甲醇全部分解。 含乙二醇的废水,采用PbO2作阳极进行电 解氧化,COD 可从 28000mg/L 降到 500mg/L。
电催化氧化技术的应用
电-Fenton应用研究举例
Mehmet A等以碳纤维为阴极,铂丝为阳 极,利用溶液中的溶解氧和阳极电生的 氧气在阴极还原生成双氧水,继而与投 加的亚铁离子构成Fenton试剂,对五氯 酚溶液进行了降解研究。
电-Fenton应用研究举例
郑曦等采用多孔石墨为阴极,不锈钢为 牺牲阳极,同时在阴极通入空气电生双 氧水和亚铁离子,对染料废水进行了处 理研究。
电-Fenton
电Fenton法是利用电解产生双氧水或亚铁离子或者同时电生这 两种物质,使之构成Fenton试剂。
阴极反应:
O2+2H++2e-=H2O2 Fe3++e-=Fe2+ ψΘ=0.6825V ψΘ=0.771V ① ②
阳极反应:
Fe = Fe2++2eψΘ=-0.4402V 2H2O = O2+4H++4e- ψΘ=1.229V H2O2+Fe2+=· OH+OH-+Fe3+ ⑤ ③ ④
电-Fenton应用研究举例
采用活性炭纤维为阴极,不锈钢片为阳 极,在阴极连续通入空气的条件下,对 硝基酚模拟废水进行了电Fenton处理方 法研究,研究结果表明,以活性炭纤维 为阴极的电Fenton 法对硝基酚具有很 好的处理效果。
土壤原位修复中的电化学方法的机制
电流的作用:
在阳极区产酸,酸液穿透土壤,是土壤表 面污染物解附; 使土壤孔隙液中污染物和人为加入的处 理液发生电迁移; 产生电位差,通过电渗作用清除污染物
电催化氧化技术的应用局限性
电解过程中,传质因素决定了电极的 反应速度及电流效率。这也是导致其能耗 较高的原因之一。
电催化氧化技术的发展研究方向
(1)光催化氧化法与电催化氧化法的结合 (2)研制高电催化活性电极材料 (3)延长金属氧化物修饰电极的工作寿命
其他电化学
电吸附
采用大比表面积的吸附性电极 分离水中低浓度的有机物
例如
S. H. lin等用Fe电极成功处理了纺织废水
L. Czpyrkowicz等采用Ti/Pt和Ti/Pt/Ir电极 处理有机胺的废水
电催化氧化技术的机理
半导体材料处于一定强度的电场时, 其价带电子也会越过禁带进入导带,同 时在价带上形成电激空穴。空穴具有很 强的俘获电子的能力,可以夺取半导体 颗粒表面的有机物或溶剂中的电子发生 氧化还原反应。
如将β-萘酚吸附到玻璃纤维球填充床电极 上
电浮选和电凝聚
电解凝聚
以Al、Fe等金属为阳极,电生成可溶性„Al(OH)6‟3+ 或FeOOH等多核羟基配合物或氢氧化物,作为混凝剂凝 聚废水中的胶体悬浮物沉积后去除。。
电凝聚
电气浮 通过电解水产生的氢、氧气体,携带废水中的胶 体微粒,共同上浮,从而达到分离、净化的目的。
电催化氧化技术的应用
处理水中醛类有机物
如采用不溶性 PbO2 作阳极,以 NaOH、Na2SO4 或 NaCl 作电解质, 在电流密度为 0.19~0.22A/cm2 下电解 3h,甲醛即被分解,电流效率可达 95.5% ,绝大部分 COD被去除。
电催化氧化技术的应用
处理水中醛类有机物
氯代醛在石墨电极的电解氧化作用 下,75% 的有机氯代化合物可被分解, 氧化得到毒性较小的化合物。
电催化氧化技术的应用
处理水中醛类有机物
对邻氯苯甲酸而言,以 PbO2作阳极, 以Pb作阴极,在无Mn2SO4存在的情况下, 邻氯苯甲酸先被还原为邻氯苄醇,然后阳极 氧化生成邻氯苯甲醛及邻氯苯甲酸。在 有 Mn2SO4存在时,可发生进一步的氧化生成 脂肪酸,去除率可达 90% 。
电催化氧化技术的应用
电催化氧化技术的应用局限性
石墨电极强度较差,在电流密度 较高时电极损耗较大,电流效率低。 铝板或铁板为可溶性电极,电极 本身材料消耗量大,成本高,因此产 生的污泥量也大。
电催化氧化技术的应用局限性
不溶性电极PbO2 的氧化能力虽然 高于石墨电极,但是因为其电催化性 能较低,对难氧化分解的有机物的效 果也不理想。
处理水中酚类有机物
大多采用孔炭材料作阳极,有机废水通 过炭孔,在电解作用下可去除其中的酚及其 他有机物。例如,COD值为29000mg/L的含酚 废水在温度为25~40℃,电压为3.7~4.0V, 电流为8A时,COD 值可降低到 671mg/L。
电催化氧化技术的应用
处理水中胺类有机物
在含胺废水中,一般采用PbO2作阳 极,苯胺很容易去除,但想要进一步 氧化成 CO2,则比较困难。
影响电催化氧化效率的因素
反应体系PH值可以影响氧化效率, 经实验证实,PH值越高,水中有机物 降解去除率越高。
影响电催化氧化效率的因素
对于半导体催化剂,只有一般来说,随着外加电压的升高,体 系产生自由基的速率也增大,有机物的去 除效率也就提高了。
电生的H2O2和Fe2+发生Fenton试剂反应:
电-Fenton的三种工作方式
阴极电Fenton法,它利用电极反应①②和⑤电生Fenton试剂 对有机物进行降解。能现场产生双氧水,并能够有效的再生 亚铁离子,但是这种方式对酸度有较高的要求(pH<2.5)。 通过电极反应③电生亚铁离子与加入的双氧水构成Fenton试 剂,对有机物进行降解研究,该方式可以实时的控制双氧水 和亚铁离子的配比,从而达到较高的反应速率,但是该方法 需要消耗双氧水。 利用电极反应①②③⑤构成Fenton体系,在产生Fenton试剂 的同时利用过量铁离子进行混凝沉淀,对实际废水有很好的 处理效果。
电催化氧化技术的应用局限性
目前用于废水处理的电极种类不多,而 且也因电极材料的限制致使其使用寿命不长, 即便是氧化物修饰电极,虽然在废水处理中 的效果良好,但其工作寿命也只有几天。这 些都进一步限制了电催化氧化方法在生物难 降解水中有机物的广泛应用。
电催化氧化技术的应用局限性
在无电解质的废水中,采用常用的石 墨电极或不溶性阳极时,因为电极对有机 物的电催化氧化性能较低,在阳极上存在 着析氧、水分解等副反应,导致电流效率 降低,能耗较大,处理费用较高,使其在 实际工程应用中受到经济因素的制约。
电催化 与有机废水处理
主要内容框架
电催化氧化技术 电催化氧化技术的发展 电催化氧化技术的机理 电催化氧化技术的优点 电催化氧化技术应用于降解水中有机物 影响电催化氧化效率的因素 电催化氧化技术的应用局限性 电催化氧化技术今后的主要研究方向
电催化氧化技术
电催化氧化(Electro-catalytic Oxidation) 是指通过阳极反应直接降解有机物或产生羟 基自由基· OH、Cl2、O2及O3一类的氧化剂降解 有机物的方法。
电极材料研究不断取得进展
出现了钌钛涂层的金属阳极 D.S.A(也叫“形稳阳极”)并实 现了工业化,该电极大大提高了电 流效率和电极寿命。
电催化氧化技术的发展
近几年来,国内外开展了一系列研究工 作,并取得了一些进展。
E. Brillas等用Pb/PbO2电极和氧气气体扩散电极 降解了苯胺和4-氯苯胺
电催化氧化技术的机理
施加电压能使催化材料内部形成电 压梯度,促使空穴与电子向相反方向移 动,抑制其复合,从而提高了催化效率。
电催化氧化技术的机理
电催化反应中,通过电解产生的O2和外源O2 在阴极上还原产生H2 O2 : & 酸性条件下: O2 +H+ +2e H 2 O2 & 碱性条件下: O2 + H2 O + 2e HO2-+ OHHO2- + H2 O + 2e H2 O2 + OH-
电催化氧化技术的应用局限性
该技术虽被证明在生物难降解水 中有机物方面较为有效,但有些方法 在实际工程应用中还存在着一些局限 性。
电催化氧化技术的应用局限性
☆ ☆ ☆ ☆
实用化电极材料不多 电极寿命不长 能耗较大 电解槽传质问题
电催化氧化技术的应用局限性
目前常采用的电极仍然是石墨、 铝板、铁板、不锈钢和一些不溶性 电极如PbO2,及一些贵金属如Pt等。
烃类有机物 醛类有机物
醇类有机物 酚类有机物 胺类有机物
电催化氧化技术的应用
处理水中烃类有机物
电催化氧化技术处理水中烃类有机物时,一 般去油量会达到93%~95% 对含油量为150mg/L以下的废水,处理后加 混凝剂过滤,可以降到0.7mg/L以下 对水溶性较大的烃类有机物,该技术通常应 用石墨颗粒组成的三维复极性固定床电极 来提高其处理效果。