第二章耐磨耐高温材料第一节耐磨材料在此主要介绍制造刀具的耐磨材料,常用的耐磨材料有碳化硅、氮化硼、氧化铝和硬质合金。
它们都是硬度大,熔点高的物质,而且在较高的温度下仍能保持足够的硬度和耐磨性。
一、碳化硅(SiC)碳化硅的晶体结构和金刚石相似,属于原子晶体。
它可以看作是金刚石晶体中有半数的碳原子被硅原子所取代。
mp=2827℃,硬度近似于金刚石,故又称为金刚砂。
制备,将砂子(二氧化硅)和过量焦炭的混合物放在电炉中加热:加热SiO2 + 3C ——→ SiC + 2CO电炉制得的碳化硅是蓝黑色发珠光的晶体,化学性质很稳定,即使在高温下也不受氯、氧或硫的侵蚀,不和强酸作用,甚至发烟硝酸和氢氟酸的混合酸(HNO3 + HF )也不能侵蚀它。
但是SiC在空气中能被熔融的强碱或碳酸钠分解:加热① SiC+ 4KOH + 2O2 ----- K2SiO3 + K2CO3 + 2H2O加热② SiC + 2Na2CO3----- Na2SiO3 + Na2O + 2CO + C应用:工业上SiC常用做磨料和制造砂轮或磨石的磨檫表面。
SiC磨料的硬度高,棱角锋利,但性脆,抗张强度小,宜用来磨脆性材料。
常用的SiC磨料有两种不同的晶体,一种是绿SiC,含SiC97%以上,主要用于磨硬质合金的工具;另一种是黑SiC,有金属光泽,含SiC95%以上,强度比绿SiC 大,但硬度较低,主要用于磨铸铁和非金属材料。
二、氮化硼(BN)BN是白色耐高温的物质,不溶于水,可以由熔融B2O3 + NH4Cl -------- BN + HCl + H2O也可B在NH3 中燃烧而制得,BN有两种晶体结构,一种与金刚石相似,另一种与石墨相似,这是由于(BN)n 与单质碳(C2)n是等电子体,因此人们根据许多感性知识总结出一条经验规律:具有相同电子数(全部电子数或价电子数)和相同原子数(H,He,Li除外)的分子或离子,它们的电子式和原子的排列方式相似,性质也相似。
这条规律叫做等电子原理。
由于B比C少一个电子,而N比C多一个电子,BN与单质碳电子数和原子数都相等,应该有相似的晶体结构。
通常制得的BN是石墨型的,俗称白色石墨,它是比石墨更耐高温的固体润滑剂。
和石墨转变为金刚石的原理相似,石墨型BN在高温(1800℃)、高压(800 Mpa)下可转变为金刚石型BN。
这种BN中B-N键长(0.156 nm)与金刚石中C-C 键长(0.154 nm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,所以是新型耐高温的超硬材料,用来制作钻头,磨具和切割工具。
三、刚玉刚玉是自然界中以结晶状态存在的氧化铝,它的硬度很高,仅次于金刚石和金刚砂。
人工高温烧结的氧化铝称为人造刚玉。
刚玉也是常用的磨料,其抗弯强度较大,韧性较好,但硬度较低,适用于磨削抗张强度大和有韧性的材料如碳钢、合金刚等。
刚玉中含有少量其他氧化物质,能呈现不同的颜色。
例如,含有少量的Cr2O3时,形成红宝石,含有少量铁和钛的氧化物时,得到蓝宝石。
现在可以用人工方法合成各种宝石,人造宝石常用作机器、仪表中轴承和手表中的钻石。
四、硬质合金第Ⅳ、Ⅴ、Ⅵ副族金属和C、N、B等形成的化合物,硬度和熔点等特别高,统称为硬质合金。
下面以碳化物为重点来说明硬质合金的结构、特性和应用。
碳与电负性比碳小的元素形成的二元化合物,除碳氢化合物外,都叫做碳化物。
碳化物有三种类型:一类是碳和活泼金属形成的碳化物,例如CaC2是离子型碳化物,能和水或稀酸作用,生成碳氢化合物。
CaC2 + 2H2O = C2H2 + Ca(OH)2CaC2 + 2HCl = C2H2 + CaCl2第二类是碳和非金属元素硅或硼形成的碳化物,它们是共价型碳化物,在固态时属于原子晶体。
第三类是碳和第Ⅳ、Ⅴ、Ⅵ副族金属形成的金属型碳化物。
这些过渡金属电负性不太小,不能与碳以离子键或共价键形成结合,但碳原子半径小,可溶于这些过渡金属形成间充固溶体。
在适宜条件下,当碳含量超过溶解度极限时,可出现一种突变,形成间充化合物,使原金属晶格转变为另一种形式的金属晶格,如Fe3C、WC等。
这类金属型碳化物的共同特点是具有金属光泽,能导电传热,硬度大,熔点高,但脆性也大。
从几何学方面考虑,要形成简单结构的间充化合物,间充原子和金属原子的半径比必须小于0.59。
C的原子半径为0.077 nm。
金属原子的半径应大于0.130 nm。
Ti、Zr、Hf、V、Nb、Ta、Mo、W等都大于0.130 nm,其碳化物的晶体结构与原金属相似。
Cr、Mn、Fe、Co、Ni等原子半径小于0.130 nm,晶格中空隙较小,形成碳化物时,使金属晶格发生较显著的变化,形成复杂结构的间充化合物。
这些碳化物的化学键在不同程度上表现出向离子键过渡,因而具有一些接近离子型碳化物的性质。
例如,Fe3C的硬度和熔点要低于TiC、WC等,化学稳定性也较差,和稀酸作用生成CH4和H2。
Fe3C + 6HCl= 3FeCl2 + CH4 + H2与离子型化合物或共价形化合物不同,间充化合物的化学式是不符合正常化合价规则的,间充化合物本身还能溶解其它的组成元素而形成以间充化合物为溶剂的固溶体,其成分可以在一定范围内变化。
同一周期的过渡元素,由第Ⅳ副族开始,从左至右形成的碳化物稳定性依次降低。
例如,第4周期元素中,Ti、V能形成很稳定的碳化物,Cr、Mn、Fe的碳化物稳定性较差,Co、Ni 的碳化物就不大稳定,Cu则不能形成碳化物。
这是因为形成金属碳化物的实质是碳原子的价电子进入过渡元素次外层d亚层的空轨道上,金属原子次外层d亚层上电子数越少(d亚层的空轨道越多)该金属和碳结合力就越强,这种碳化物的稳定性也就越高。
从原子结构来看,同周期中由第Ⅳ副族开始,从左至右,次外层d亚层的电子数逐渐增加,形成的碳化物稳定性便依次降低。
金属型碳化物是许多合金钢中的重要组成部分,对合金钢的性能有较大影响。
例如,一般工具钢当温度达到300℃以上时,硬度显著降低,使切割过程不能进行;但含W 18%,Cr 4%,V 1%的高速钢制成的刀具有较高的红硬性,当温度接近600℃时,仍能保持足够的硬度和耐磨性,因此可在较高的切割速度下进行切割,并提高了刀具的寿命。
这主要是由于高速钢中含有大量W、Cr、V的碳化物。
碳化钛具有高熔点,高硬度,抗高温氧化,密度小和价廉等优点,是一种非常重要的金属型碳化物,并得到了广泛的应用。
除碳原子外,周期表中与碳相邻的氮N原子和硼B原子也能进入金属晶格的空隙中形成间充型碳化物相似的性质:能导电、传热、熔点高、硬度大。
由于N原子半径(0.075 nm)比C原子半径(0.077 nm)还略小些,不仅Ti、Zr、Hf、V、Nb、Ta、Mo、W等能和N形成晶体结构与原金属相似的间充化合物,就是Cr、Mn、Fe、Co、Ni也能和N形成晶体结构与原金属相似的间充化合物,但Mn、Fe、Co、Ni 等氮化物的晶格已发生某种程度的变形。
渗氮B原子半径(0.082 nm)比C原子半径略大,所以硼化物的晶体结构就比较复杂。
常用的硬质合金可分为两大类:一类是钨钴硬质合金:例如,YG6 是含WC 94%,Co 6%的硬质合金,其中Co起粘合剂的作用,钴含量越高,韧性越好,能抗冲击,但硬度和耐热性降低。
另一类是钨钴钛硬质合金:例如YT14是含WC 78%、TiC 14%、Co 8%的硬质合金,加入Ti能提高合金的红硬性,在1000~1100℃时还能保持其硬度。
硬质合金刀具的切削速度可比高速钢刀具提高4~7倍,所以硬质合金是制造高速切削和钻探等工具主要部分的优良材料。
钢铁制件在化学热处理过程中,使碳、氮或硼等渗入低碳钢的表面,能在钢的表层生成具有高硬度和耐磨性的碳化物,氮化物或硼化物,而钢的内部仍保持塑性和韧性。
近年来制成一种新型工具材料--钢结硬质合金。
它是以TiC、WC等碳化物为硬质材料,用铬钼钢或高速钢作“粘合剂”而制成的。
它兼有硬质合金和钢的性能,既有一般合金钢的可加工、热处理、焊接的性能,又有硬质合金的高硬度、高耐磨性等优点,克服了工具钢不耐磨和硬质合金难加工的缺点,而且成本较低,是很有发展前途的材料。
另外,通过气相沉积的方法在合金钢表面涂一薄层耐磨的TiC或TiN涂层以形成涂层硬质合金,它也兼有硬质合金和钢的性能。
第二节耐高温材料一、耐热合金耐热合金用作各种热机和化工装置的高温部件,是提高这类机械性能和效率不可缺少的材料。
耐热合金应具备以下的性能:1、在高温条件下,仍有较好的机械性能。
2、组织的稳定性:在高温条件下,不会由于相变而引起韧性或断裂强度降低。
3、耐高温腐蚀、高温时能抵抗周围介质中氧气、硫和其他杂质的腐蚀。
第Ⅴ、Ⅵ、Ⅶ副族元素是高熔点金属。
因为这些元素原子中未成对的价电子数很多,在金属晶体中形成了坚强的化学键,而且它的原子半径较小,晶格结点上粒子间的距离短,相互作用力大,所以熔点高,硬度大。
耐热合金主要是Ⅴ~Ⅶ副族元素和第Ⅷ族元素形成的合金。
按化学成分可分为铁基合金、镍基合金、钴基合金和铬基合金等几种类型。
耐热合金钢是以铁为主要成分的铁基合金,耐热合金钢中含有一定量铬,因为铬易形成具有保护性的氧化物,可提高钢的抗氧化性和耐腐蚀性。
一般随着铬含量的增多,耐热钢的耐高温腐蚀性相应提高。
耐热钢中加入适量的Mo(0.2~2.0%),对增加蠕变强度是很有效的。
近年来,随着科学技术和工农业生产的发展,对耐热合金的要求越来越高,希望提高使用温度,延长在高温下使用的时间,并减轻质量,因此逐渐从镍铁基合金代替铁基合金。
镍铁基合金含有Ni25~60%和Fe15~60%,还含有Cr、Mo、W、Ti、Nb等元素,增加了高温强度。
在大多数镍铁基耐热合金中,Ni和Fe含量必须保持适当比例,这会影响合金的成本和有效的使用温度范围。
一般来说,Ni含量高则使用温度高,稳定性也得到改善,但成本较高。
二、耐火材料耐火材料是指能耐1580℃以上的高温,并在高温下能耐气体,熔融金属,熔融炉渣等物质侵蚀,而且有一定机械强度的无机非金属材料。
耐火度是材料受热软化时的温度,它是耐火材料的重要性能之一。
常用的耐火材料是一些高熔点的氧化物、碳化物和氮化物。
按耐火度的高低,可分为:普通耐火材料耐火度为 1580~1770℃高级耐火材料 1770~2000℃特级耐火材料 >2000℃按化学性质可分为:酸性耐火材料、碱性耐火材料和中性耐火材料,此外还有碳质耐火材料。
1、酸性耐火材料: 主要成份是一些高熔点的酸性氧化物。
例如SiO2(mp1610℃)能耐酸性物质的侵蚀,但在高温下易和碱性氧化物,熔融的碱或Na2 CO3 发生发应而受到侵蚀。
SiO2 + CaO = CaSiO3SiO2 + 2NaOH = Na2SiO3 + H2OSiO2 + Na2CO3 = Na2SiO3 + CO2↑常用的酸性耐火材料有硅酸 SiO2 >93% 耐火度1670~1710℃半硅酸 SiO2 >65% Al2O320~30% 1650~1710℃粘土砖 SiO2 50~60% 弱酸性 1650~1710℃Al2O3 30~48%2、碱性耐火材料,主要成分是一些高熔点的碱性氧化物。