MEMS加工技术及其工艺设备童志义MEMS是微电子技术与机械,光学领域结合而产生的,是20世纪90年代初兴起的新技术,是微电子技术应用的又一次革命性实验。
MEMS很有希望在许多工业领域,包括信息和通讯技术,汽车,测量工具,生物医学,电子等方面成为关键器件,把在Si衬底上的MEMS与IC集成在一起,还可以产生许多新的功能。
但是制造MEMS的加工技术主要有三种,第一种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件;第二种是以日本为代表的利用传统机械加工手段,即利用大机器制造出小机器,再利用小机器制造出微机器的方法;第三种是以德国为代表的LIGA(德文Lithograpie-光刻,Galvanoformung-电铸的Abformung-塑铸三个词的缩写)技术,它是利用X射线光刻技术,通过电铸成型和铸塑形成深层微结构的方法。
其中硅加工技术与传统的IC工艺兼容,可以实现微机械和微电子的系统集成,而且该方法适合于批量生产,已经成为目前MEMS的主流技术。
随着电子,机械产品微小化的发展趋势,未来10年,微机械Micromachine与微机电MEMS产业将逐渐取代半导体产业成为主流产业,为此,日本,美国一些著名企业均开始加强其MEMS组件/模块制造能力。
当前,微机械与MEMS产业已被日本政府列入未来10年保持日本竞争力的产业,虽然目前MEMS组件/模块市场主要集中在一些特殊应用领域,但未来的5~10年内,MEMS组件/模块市场规模将扩大到目前的3倍,MEMS相关系统市场将增长10倍(见表1),因此,掌握组件/模块技术将有利于未来在MEMS市场取得主动权。
微系统的增长包括微电子机械和最近对半导体产业设备和工艺开发具有重大影响的纳米技术。
光学式电子束直写光刻与湿法蚀刻硅工艺的结合,促进了早期的MEMS技术的发展。
最近,随着感应耦合等离子体刻蚀系统在深度垂直侧壁结构的应用使MEMS在单晶硅的开发成为可能。
与此同时,半导体多晶硅的淀积和刻蚀工艺在复杂的多层MEMS系统中也获得成功的应用。
而在硅材料和传统刻蚀、淀积工艺之外的一些新的发展趋势正在引起人们更多的关注。
1MEMS加工技术传统的制造业依赖大量的关键机械设备和有关的工艺,这些设备和工艺已有几十年甚至上百年的历史了。
例如铸造、锻造、车削、磨削、钻孔和电镀等均是一个综合的制造环境所必不可少的。
这些设备和工艺与大量的其它物理和化学手段及工艺均用作制造环境的基础,它们在半导体产业中均具有其相应的替代技术。
光学光刻,耦合等离子刻蚀,金属的溅射涂覆,金属的等离子体增强化学汽相淀积和介质隔离以及在掺杂工艺中的离子注入和衬底处理,现都已成为集成电路制造中的常规工艺。
基于电子束制版和光学投影光刻及电子束直写光刻这种基本的图形加工技术现已成为先进的纳米尺寸作图技术的主要角色。
上述的这些设备和技术以及一些还未流行的设备的工艺目前正被用于MEMS的纳米技术制造,且成为微时代的微机械加工设备,三维微细加工的主要途径有光刻、准分子激光加工、LIGA、UV-LIGA、体硅加工技术和深度反应离子刻蚀等。
从目前看来,对于大多数半导体产业来说,采用光学光刻分辨力小至30nm的可能性不可排除。
其它的一些准备用于光学加工受到限制的替代技术有X射线技术或极紫外投影光刻,电子束投影光刻(SCALPEL)以及接近式X射线光刻。
所有这些技术将与电子束直写系统和聚集离子束系统一起用于纳米尺寸光刻,并正在日益进入更为宽阔的MEMS的纳米技术应用领域。
除了这些粒子束设备以外,基于扫描隧道显微镜(STM)原子力显微镜(AFM)的探针系统也能用于光刻,进行分子的原子级材料的加工处理。
从工艺上讲,MEMS的制造技术分为部件及子系统制造工艺和封装工艺、前者包括半导体工艺、集成光学工艺、厚薄膜工艺、微机械加工工艺等;后者包括硅加工技术、激光加工技术、粘接、共熔接合、玻璃封装、静电键合、压焊、倒装焊、带式自动焊、多芯片组件工艺等。
MEMS与微电子系统比较,区别在于其包含有微传感器、微执行器、微作用器、微机械器件等的子系统,相对静态微器件的系统而言,MEMS的加工技术难度要高。
MEMS加工技术是在硅平面技术的基础上发展起来的,虽然历史不长,但发展很快,已成为当今最重要的新技术之一。
从目前应用来看,其加工技术主要可分为硅基微机械加工技术和非硅基微机械加工技术。
1.1硅基微机械加工技术目前正在使用的硅基微机械加工技术有三种:体硅体微机械加工、表面微机械加工、复合微机械加工。
1.1.1体硅微机械加工这种加工是将整块材料,如单晶硅基片加工成微机械结构的工艺,与微电子生产中的亚微米光刻工艺比较,其工艺尺度相对较大而粗糙,线宽一般在几微米到几百微米之间。
根据蚀刻方法的途径的差异,体硅微机械加工又分为a.硅各向异性化学湿法腐蚀技术,b.熔解硅片技术,c.反应离子深刻蚀技术。
1.1.2表面微机械加工技术这种技术是利用集成电路的平面加工技术加工微机械装置,被加工的微机械装置一般包括一层用作电连接的多晶硅层和一层或多层的机械加工多晶层,由它们形成各种机械部件,如悬臂梁、弹簧、联动杆等。
由于整个工艺都基于集成电路制造技术,因此可以在单个直径为几十毫米的单晶硅基片上批量生成数百个微机械装置。
这种技术的最大优点是在与IC工艺完全兼容,但是,它制造的机械结构基本上都是二维的,若利用多层加工,也可制造结构复杂,功能强大的MEMS系统,但是微型元件的布局平面化和残余应力等问题必须在设计中予以考虑。
(1)电子束光刻在扫描电子显微镜基础上发展而来的电子束光刻系统,提供了小至纳米尺寸分辩力的聚合物抗蚀剂图形转印的一种灵活的曝光设备,远远地超过了目前光学系统的分辨力范围。
最先进的系统如Leica光刻公司的100keVVB6HR矢量扫描电子束曝光机,提供了小至几纳米的高斯束探针。
激光控制的工作台允许基本图形拼接形成整体图形。
这些系统提供了独特的灵活手段,适用于没有最终分辩损失的纳米技术要求的MEMS器件加工。
2聚焦离子束光刻利用聚焦离子束设备修复光掩模和集成电路芯片经过10~15年的发展在半导体业内已被接受。
其与扫描显微镜,精密刻蚀和淀积的独特结合,能使聚焦离子束设备在MEMS研究中形成最佳的研究与开发的选择方法。
很高的探针分辩力还形成了新的机器(小至5nm)。
它意味着聚焦离子束方法将在纳米技术的研究与开发中扮演一种非常关键的角色。
这种系统通常由一个液态金属离子源提供一束镓离子加速到50keV后在靶材表面产生最大溅射率。
3扫描探针加工技术(SPL)扫描探针加工技术作为一种无掩模的加工手段,因其所需设备简单和加工精度达纳米量级,正在受到广泛的重视和研究1。
这项技术可以作刻蚀或者淀积加工,甚至可以用来操纵单个原子和分子。
目前SPL已经成功应用到刻划金属(Ti和Gr)半导体(Si和GaAs)以及绝缘材料(Si3N4和硅烷),还用于自组装单分子(SAM)薄膜上。
1.1.3复合微机械加工技术该技术是体硅微机械加工技术和表面微机械加工技术的结合,具有两者的优点,同时也克服了二者的不足。
1.2非硅基微机械加工技术1.2.1LIGA加工技术LIGA加工技术包括三个基本步骤,即借助于同步辐射X光实现深层光刻,将样品浸入电解液中在凹槽处电镀金属以及去除光刻胶和隔离层,制造微塑注模进行微复制注塑成形的微电铸技术。
这种技术能实现高深宽比的三维结构,其关键是深层光刻技术。
为实现高深宽比,纵向尺寸达到数百微米的深度刻蚀,并且侧壁光滑,垂直,一方面需要高强度,平行性很好的光源,这样的光源只有用同步辐射X光才能满足;另一方面要求用于LIGA技术的抗蚀剂必须有很好的分辩力,机械强度,低应力,同时还要求基片粘附性好。
LIGA技术的最大优势在于:(1)深宽比大,准确度高。
所加工的图形准确度小于0.5μm,表面粗糙度仅10nm,侧壁垂直度>89.9°,纵向高度可达500μm以上;(2)用材广泛。
从塑料(PMMA、聚甲醛、聚酰胺、聚碳酸酯等)到金属(Au、Ag、Ni、Cu)到陶瓷(ZnO2)等,都可以用LIGA技术实现三维结构;(3)由于采用微复制技术,可降低成本,进行批量生产。
2.2.2激光微机械加工技术LIGA技术虽然具有突出的优点,但是它的工艺步骤比较复杂,成本费用昂贵。
为了获得X光源,需要复杂而又昂贵的同步加速器。
相对于LIGA加工技术而言,激光微机械加工技术具有工艺简单、成本低等优点,它代表未来MEMS加工技术发展的方向。
激光微机械加工技术依靠改变激光束的强度和扫描幅度对涂在基片上的光刻胶进行曝光,然后进行显影,最后采用反应离子刻蚀技术,按激光束光刻胶模型加工成微机械结构。
显然,激光光刻技术比X射线光刻的工艺要简单的多。
将其与各向异性腐蚀工艺结合就可用于加工三维结构。
1.2.3深等离子体刻蚀技术深等离子刻蚀一般是选用硅作为刻蚀微结构的加工对象,也即高深宽比硅刻蚀(HARSE),它有别于VLSI中的硅刻蚀,因此又称为先进硅刻蚀(ASE)工艺。
该技术采用感应耦合等离子体(ICP)源系统,与传统的反应离子刻蚀(RIE),电子回旋共振(ECR)等刻蚀技术相比,有更大的各向异性刻蚀选择比和更高的刻蚀速率,且系统结构简单,使高密度硅离子刻蚀技术真正发展成了一项实用的刻蚀技术。
这一技术的最大优越性是只采用氟基气体作为刻蚀气体和侧壁钝化用聚合物生成气体,从根本上解决了系统腐蚀和工艺尾气的污染问题。
这一技术的关键是采用了刻蚀与聚合物淀积分别进行而且快速切换的工艺过程。
同时还采用了射频电源相控技术使离子源电源和偏压电源的相位同步,以确保离子密度达到最高时偏压也达到最高,使高密度等离子刻蚀的优势得到充分发挥。
ICP刻蚀技术可以达到很高的深宽比(>25:1),选择性好,可以完成接近90°的垂直侧壁。
1.2.4紫外线厚胶刻蚀技术由于MEMS结构的特殊性,在传统的IC工艺基础上研究与之相适应的新工艺是MEMS持续发展的基础。
深度光刻是其核心技术之一,其中紫外线厚胶光刻工艺作为高深宽比微机械制造的关键工艺,成为微机械工艺研究中的热点。
使用紫外光源对光刻胶曝光,其工艺分为两个主要部分厚胶的深层紫外光刻和图形中结构材料的电镀。
其主要困难在于稳定、陡壁、高精度厚胶模的形成。
对于紫外厚胶光刻适用光刻胶的研究,做得较多的是SV-8系列负性胶[2]这种胶在曝光时,胶中含有少量的光催化剂发生化学反应,产生一种强酸,能使SV-8胶发生热交联。
SV-8胶具有高的热稳定性,化学稳定性和良好的力学性能,在紫外光范围内光吸收度低,整个光刻胶层可获得均匀一致的曝光量。
因此将SV-8胶用于紫外光刻中,可以形成图形结构复杂,深宽比大,侧壁陡峭的微结构。