目录摘要 .............................................. - 1 -前言 .............................................. - 2 -一、系统设计电路方案论述 ............................ - 3 -二.电路设计分析..................................... - 5 -(一)电路原理框图:................................. - 5 -(二)电路设计原理图................................. - 5 -(三)电路总体工作原理.............................. - 12 -三、制作调试 ...................................... - 12 -四、总结.......................................... - 13 -致谢 ............................................. - 15 -参考文献.......................................... - 16 -视力保护器的设计[摘要]本设计主要实现测距报警、测光报警以及定时报警功能。
利用超声波发射接收器、NE555、光敏电阻等元件组合成电路,来实现上述功能。
通过超声波接收头对接收的超声波信号进行调制输出,所采用的是纯硬件电路,且分别对超声波接收与发射、NE555及光敏电阻的特性及各个功能进行分析,通过这些元件的组合来实现设计所需的报警功能。
该视力保护器实用、方便、功耗低、易于维护,并且具有保护使用者视力、预防近视的功能。
[关键词] 视力保护器多功能超声波光敏电阻 NE555 报警功能前言目前,青少年视力低下,已成为国内外共同关心的公共卫生问题。
资料显示,我国小学生视力低下率为 26.96%,初中生 53.43%,高中生 72.8%,大学生 77.95%。
特别是调查显示 50%以上的学生及家长缺乏视力保健最基本的科普知识,不懂得“近视与盲只差一步”的危害性,因而有 41.6%视力低下的学生并未采取任何矫正措施,并且缺乏专业机构的治疗。
因此设计一个视力保护器用来保护视力是由为重要的。
此设计基于实验室现有的硬件平台,主要实现多功能视力保护器的硬件开发与设计,并完成相应的硬件制作。
其研究内容分为两部分:对视力保护器的硬件设计和硬件制作。
在设计中存在着如何有效的提高视力保护以及对硬件电路准确调试的难点。
在硬件设计中,基于超声波技术设计的多功能实现控制声光提示电路工作的理论研究有一定的研究意义。
一、系统设计电路方案论述方案一:由超声波发射振荡器、报警声振荡器和定时用振荡器、一个超声波接收放大器、一个光控电路和各功能的控制与指示电路组成。
如图1为电路原理图方案二:本电路由两个定时器和晶振电路组成的多功能视力保护器电路。
如图2 电路原理图图2 方案二电路原理图方案三:本电路由CD4001.4二2输人端或非门集成电路、CD4011.4一2输人端与非门集成电路和CD4060.4异或门集成电路组成。
通过3只门电路中的各个门的组合,组成一个具有光强保护、光弱保护和超时阅读保护为一体的多功能视力保护器电路。
如图为电路原理图。
通过上述比较可以看出第一方案更为合理。
它采用三块电路各自独立却又相互结合的方法,实现了电路板和芯片的合理使用,实现了距离检测、计时功能和采光功能。
且实测静态电流不大于8mA。
设计原理简单、设计合理、造价低廉,能起到了预防近视、保护眼睛等作用。
第二方案设计过于简单达不到要求。
第三方案设计复杂且制作成本过高。
因此我选用第一方案。
二.电路设计分析(一)电路原理框图视力保护器由测光电路、显示电路、报警电路、定时电路4个部分组成, 如图4所示图4 电路原理框图(二)电路设计原理图图5 电路设计原理图本电路主要包含:该电路包括3个振荡器:(即超声波发射振荡器、报警声振荡器和定时用振荡器)、一个超声波接收放大器、一个光控电路和各功能的控制与指示灯电路。
1、测光电路本电路主要有光敏电阻器RG、电阻器R4、电容器C和IC2内部的与非门D8组成。
(1)光敏电阻RG选用亮阻小于2kΩ、暗阻大于2MΩ的光敏电阻器。
其工作原理是基于内光电效应。
在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻,为了增加灵敏度,两电极常做成梳状。
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。
通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。
在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。
光照愈强,阻值愈低。
入射光消失后,由光子激发产生的电子—空穴对将复合,光敏电阻的阻值也就恢复原值。
在光敏电阻两端的金属电极加上电压,其中便有电流通过,受到波长的光线照射时,电流就会随光强的而变大,从而实现光电转换。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也加交流电压。
半导体的导电能力取决于半导体导带内载流子数目的多少。
图6 光敏电阻原理图(2) 测光电路原理分析本电路的工作原理是:当周围光线变弱时引起光敏电阻的阻值增加,使加在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。
反之,若周围的光线变亮,则RG的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对光照度的控制。
如图7所示2. 定时电路本电路主要有:定时控制电路由定时器集成电路NE555、电阻器R13、R14、电容器C9、C10。
电位器RP和IC2内部的与非门D9组成NE555是属于555系列的计时IC的其中的一种型号,555系列IC的接脚功能及运用都是相容的,只是型号不同的因其价格不同其稳定度、省电、可产生的振荡频率也不大相同;而555是一个用途很广且相当普遍的计时IC,只需少数的电阻和电容,便可产生数位电路所需的各种不同频率之脉波讯号。
NE555的特点有:只需简单的电阻器、电容器,即可完成特定的振荡延时作用。
其延时范围极广,且其输出端的供给电流大,可直接推动多种自动控制的负载。
它的操作电源范围极大,可与TTL,CMOS等逻辑闸配合,也就是它的输出准位及输入触发准位,均能与这些逻辑系列的高、低态组合。
NE555引脚位配置说明下:如图8所示图8 NE555接脚图Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。
Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。
触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。
Pin 3 (输出) -当时间周期开始555的输出输出脚位,移至比电源电压少1.7伏的高电位。
周期的结束输出回到O伏左右的低电位。
于高电位时的最大输出电流大约200 mA。
Pin 4 (重置) -一个低逻辑电位送至这个脚位时会重置定时器和使输出回到一个低电位。
它通常被接到正电源或忽略不用。
Pin 5 (控制) -这个接脚准许由外部电压改变触发和闸限电压。
当计时器经营在稳定或振荡的运作方式下,这输入能用来改变或调整输出频率。
Pin 6 (重置锁定) - Pin 6重置锁定并使输出呈低态。
当这个接脚的电压从1/3 VCC电压以下移至2/3 VCC以上时启动这个动作。
Pin 7 (放电) -这个接脚和主要的输出接脚有相同的电流输出能力,当输出为ON时为LOW,对地为低阻抗,当输出为OFF时为HIGH,对地为高阻抗。
Pin 8 (V +) -这是555个计时器IC的正电源电压端。
供应电压的范围是+4.5伏特(最小值)至+16伏特(最大值)。
图9 单稳态触发器电路图10 单稳态波形图用555定时器组器,图10为其波形图。
图中,t0~t1为稳态,t1~t3为暂稳态,t3时刻恢复稳态。
由上述可知,555定时器组成的单稳态电路由输入脉冲信号的下降沿触发,使其输出状态产生翻转,另外,在暂稳态过程结束前,u1必须恢复为1,否则电路内的RS触发器为不确定状态,输出不能维持0状态。
因此这种单稳态电路只能用负窄脉冲触发。
如果输入脉宽大于输出脉宽,则输入端可加RC微分电路,使输入脉宽变窄。
(2)定时电路原理如图11所示图11 定时电路原理分析在定时时间未到时,NE555的3脚输出低电平,与非门D9输出高电平,VL4不发光,VD5处于截止状态,音频振荡器不工作,HA不发声。
当定时时间结束时,NE555的3脚变为高电平,与非门D9输出3kHz的矩形脉冲信号,使VL3闪亮,音频振荡器振荡工作,HA发出警示声。
3.超声波控制电路本电路主要有两部分组成:一部分超声波发射电路由超声波发射器B2、非门集成电路IC1(Dl-D6)内部的D4-D6、或非门集成电路IC3(DlO-D13)内部的或非门Dl0、Dl1和电阻器RlO-Rl2和电容器C7、C8组成。
另一部分接收电路由超声波接收器B1、电阻器R2、R3、R5、LC1内部的非门D1-D3、与非门集成电路IC2(D7-D9)内部的D7、电容器C3-C6、二极管VD1、VD2、晶体管V组成。
超声波接收和发射电路元件发生器的原理是首先由信号发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就是换能器的频率,一般应用在超声波设备中的超声波频率为20KHz、25KHz、28KHz、33KHz、40KHz、60KHz;100KHz或以上现在尚未大量使用。
但随着以后精密清洗的不断发展。
相信使用面会逐步扩大。
比较完善的超声波发生器还应有反馈环节,主要提供二个方面的反馈信号:第一个是提供输出功率信号,我们知道当发生器的供电电源(电压)发生变化时。
发生器的输出功率也会发生变化,这时反映在换能器上就是机械振动忽大忽小,导致清洗效果不稳定。
因此需要稳定输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。
第二个是提供频率跟踪信号。
当换能器工作在谐振频率点时其效率最高,工作最稳定,而换能器的谐振频率点会由于装配原因和工作老化后改变,当然这种改变的频率只是漂移,变化不是很大,频率跟踪信号可以控制信号发生器,使信号发生器的频率在一定范围内跟踪换能器的谐振频率点。