当前位置:文档之家› 第七章大气激光通信系统案例

第七章大气激光通信系统案例


大气湍流对光束特性的影响程度与形式同 光束直径d与湍流尺度l有很大关系,大致 可分为三种情况: (1)d<<l,湍流主要使光束随机产生随机 偏折,接收机端光束漂移

(2) d≈l。湍流主要使光束截面发生随机偏转,从 而形成到达角起伏,使接收端的焦平面上出现像 点抖动。 (3) d>>l,这是一种更常见的情况,此时光束截 面内含有许多小湍流漩涡,各自对照射的那一小 部分光束起衍射作用,是光束的强度和相位在空 间和时间上出现随机分布,相干性退化,光束面 积也会扩大,从而引起接收端的光强起伏,同时 衰减总体接收光强
7.3用于大气激光通信的关键器件和要求

半导体光源 窄带光学滤波器 光学天线
7.3.1 半导体光源
1、工作波长的选择 大气的“通信窗口”是工作波长选择的重要依据。同时 还要注意避开背景光的高辐射谱段。 大气和地面对太阳光的散射形成的背景辐射,对激光大 气通信的接收机来说是一个强的噪声源。 由图知,为减小背景辐射的影响,不宜采用可见波段的 激光,紫外和红外是可选择对象
2、大气散射 大气散射是由大气中不同大小的颗粒的反射或折射造 成的,这些颗粒包括组成大气的气体分子、灰尘和大的水 滴。纯散射虽然没有造成光波能量的损失,但是改变了光 波能量的传播方向,使部分能量偏离接收方向,从而造成 接收光功率的下降 大气对光的散射主要有瑞利散射、米式散射和非选择 散射(又称几何散射) 在近地面大气层中,分子散射的影响是很小的,造成 光能量衰减的主要原因是悬浮粒子的散射
光通信原理与技术
大气激光通信
7.1.2 大气激光通信的应用优势
无线优势:安装便捷、使用方便,很适合于在特殊地形地貌及 有限通信难以实现和机动性要求较高的场所工作;开通周期短, 成本低 2. 容量优势:光波频率高,信息承载能力强 3. 电磁兼容优势:不占用无线电频率资源、抗电磁干扰能力强, 具有很强的军事应用价值 4. 保密优势:激光良好的方向性使其传输的数据具有高度保密性; 激光光束的发散角小,信息截获难 5. 尺寸优势:光波波长短,在提供同样增益的情况下,其天线尺 寸要比微波、毫米波通信天线尺寸小得多;通信终端体积越来 越小 6. 价格优势:半导体激光通信系统的容量/价格比极具竞争优势 7. 功耗优势:由于激光方向性极强,因此光源只需较小的功率即 可实现通信,通信终端功耗很低,易于远程馈电 上述优势中,无线优势和容量优势二者的结合一方面克服了光 纤通信在灵活性方面的缺点,另一方面又解决了无线/微波通信在容 量方面的缺点,因而最为人们所看重。
7.2.2 大气对激光束传播的影响
大气对激光束传播的主要影响 大气分子及悬浮微粒对光束的吸收与散射: 导致光束能量损失,工程上常称大气衰减 大气湍流运动对光束的扰动:引起光束的 强度闪烁、光束漂移、扩展与抖动等现象, 通常称为大气湍流效应
1、大气吸收 紫外区(0.2~0.4μm):主要的吸收来源于O3 可见光区:水汽、O2 、O3 均有强吸收 红外区:最活跃的吸收气体分子是水汽、 O3和 CO2 。 气体分子的大量吸收谱线组成了吸收带群,但 在吸收带之间少数几个区域中存在相对“透明”的 “窗 口”,在这些窗口中辐射透过率较高,吸收较弱, 通 常称大气窗口。
3、大气湍流 在大气光学领域,湍流是指大气中局部温度、 压力的随机变化而带来的折射率的随机变化。湍 流产生许多温度、密度具有微小差异而折射率不 同的漩涡元,这些漩涡元随风速等快速地运动并 不断的产生和消灭。 当光束通过这些折射率不同的漩涡元时会产生 光束的弯曲、漂流和扩展畸变等大气湍流效应, 致使接收光强的闪烁与抖动。
4、热晕效应 所谓热晕效应,是指大功率激光束在大气中传 播时,激光束路径上的大气分子或悬浮微粒将吸 收部分激光能量而发热,且足以导致空气折射率 发生变化,从而使激光束发生附加的弯曲和畸变 等现象,也称热畸变效应 原则上讲,只要大气对激光能量有吸收就会 产生热晕效应,但在激光功率较低或吸收系数很 小的情况下,热晕效应对激光束传播影响极小, 通常可不考虑
2、发射功率的选择 激光束在大气中传播时,光能量不仅会受 到大气吸收、大气散射而衰减,还会因光束 的发散造成接收光功率损耗。 随着传输距离的增加,单位面积内的光能 量越来越小。对口径一定的接收端来讲,接 收到的光功率也就减少了,因此在发送端往 往需要通过光学天线系统对激光束进行扩束。

当不使用发送光学天线 时,光束发散损耗较大, 1550nm波长尤为显著, 在2km处损耗达到23dB, 850nm的波长稍好一些, 但也达到了18dB;而使 用口径为10cm的发送光 学天线后,光束发散损 耗大大降低。
1.
7.2 激光在大气信道中的传播特性

7.2.1 大气的特点 大气是由大气分子、水蒸气及各种杂志微粒组 成的混合物,这些粒子密度最大的地方是在靠近 地面的对流层,粒子密度随高度增加而减小,直 至穿过电离层(包含电离电子,它形成包围地球 的辐射带)。实际粒子的分布依赖于大气层条件。 由于温度差异、风等原因,大气中的分子、微 粒处于不断的运动之中,其组成、湿度、密度等 都在不断的变化,使得大气常处于湍流运动状态


在实际情况中,温差的扰动会使大气不断地混合, 产生许多无法预料的各种尺度的湍流元,这些湍 流元共同作用,加强了接收端的光强起伏(相同 时间内的光强起伏还与风速及当时的气象条件有 关)。因此对大气湍流的探测和观察是比较困难 的,大气湍流使信号探测变得不容易掌握,对大 气激光通信系统的稳定性造成很大的障碍。 目前,自适应光学技术可较好的解决这一问题, 但仍需对大气湍流的变化尺度及变化规律进行更 多的实验探索

对于常用的红外激光波段都是良好的大气 窗口。

考虑到器件的可行பைடு நூலகம்,可以认为 810~860nm、1550~1600nm都是无线光 通信中可以选择的通信波长。从更好的抑 制背景光噪声的考虑出发,1550nm附近 是更适合的通信窗口,且与目前光纤通信 使用的波长一致,可用器件选择余地大、 制造水平高,价格也相应的比较便宜
相关主题