当前位置:文档之家› 塑料光纤的特性与应用(doc 9页)

塑料光纤的特性与应用(doc 9页)

塑料光纤的特性与应用(doc 9页)塑料光纤的特性以及应用080611338 丁宁摘要:介绍了塑料光纤在局域网、汽车工业、传感器等领域的应用。

通过对石英光纤、金属电缆与塑料光纤的性能进行比较,得到了塑料光纤具有芯径大、柔韧性好、价格低廉、制作简单等特点。

就塑料光纤在局域网、汽车工业、传感器等领域的应用进行了分析、总结。

此外还指出阻碍塑料光纤进一步发展的因素。

一、引言随着通信产业的迅猛发展,光纤作为信息载体的光信号传输介质在大容量数据的高速传输中起着重要的桥梁和纽带作用。

目前,石英光纤由于其宽带、低损耗、适合长距离通信传输,而占据着光通信的主要市场。

然而,由于石英光纤芯径小、连接复杂、成本高,所以在光纤人户时遇到很大的困难。

随着短距离、大容量的数据通信系统及汽车等工业的迅速发展,塑料光纤(P0F)以其芯径大、柔韧性可塑性强、重量轻、价格低廉等优点而受到国际的普遍关注。

为了对塑料光纤有一个较为全面的认识,本在查阅有关文献的基础上,阐述塑料光纤的主要特性和应用以及制备方法。

二、基本原理塑料光纤的定义:塑料光学纤维是以光学塑料为材料的一类重要的光学纤维。

塑料光纤传光原理:1、子午光线在阶跃型塑料光纤中的传输阶跃型塑料光纤是一种具有芯皮结构的光纤。

子午平面指的是包含有光纤轴的平面,所谓子午线,就是光线的传播路径始终在同一平面内,子午光线总是和光纤轴相交的,光在一种均匀介质传播时是一种直线式传播:当光从一种介质传至另一介质表面时,一般同时发生反射和折射;如果光从折射率小的光疏介质射入折射率大的光密介质时,则折射角小于入射角;而当光从光密介质射入光疏介质时折射角将大于入射角,因而当光从光密介质射入光疏介质时就有可能出现只有反射而无折射的现象,这就是全反射,全反射是光折射的一种边界对不可见光波透过性能好。

在可见光和近红外波段的透过性能接近光学玻璃,在远红外和紫外波段,透过率可以大于50%,比光学玻璃好。

(1)成本低、工艺简便。

塑料的原材料比玻璃原料便宜,而且塑料光学纤维的操作温度通常在300ºC以下,而玻璃光学纤维的制作则需要1000ºC以上的高温,工艺比玻璃光学纤维简单。

塑料光学纤维主要有如下缺点:(1)耐热性能差。

一般只能在-40ºC~80ºC的温度范围内使用,只有少数塑料光学纤维可以在200ºC附近工作。

当温度低于-40ºC时,塑料光学纤维将变硬、变脆。

由于塑料的熔点低,比玻璃易老化。

(2)抗化学腐蚀和表面磨损性能比玻璃差,因而表面易被划伤,影响光学质量。

(3)易潮解。

由于塑料光学纤维具有上述优缺点,在光学纤维的广泛应用中可以用它来补充玻璃光学纤维之不足。

因而,塑料光学纤维进来已成为光学纤维的一个极其重要的方面。

塑料光学纤维的特性:1、光学特性由于塑料光学纤维是一种纤维状长链分子,随着拉丝过程,长链分子的宏观取向将和光学纤维轴一致。

同时塑料光学纤维是用单体聚合而成,很难得到密度均匀的材料,因而,光学不均匀性就很难避免,损耗难以大幅度下降。

2、机械性能塑料光学纤维的一个显著的特点是柔软性好。

例如,一毫米粗的塑料光学纤维,按曲率半径为6毫米做180º的来回弯曲100多次,对光学纤维毫无损害,透过率并无变化。

总之,塑料光学纤维的曲率半径大于塑料光学纤维直径的3倍时,透过率仍无大的变化。

塑料光学纤维耐热性能差事一个大缺点。

一般不能超过80ºC,这是因为塑料本身熔点低的缘故。

塑料硬度差,易破损,易老化。

3、化学性能塑料光学纤维的化学稳定性较差,在丙酮,醋酸乙酯或者苯的作用下,光学性能会受到很大影响。

表一给出了塑料光学纤维的一些主要性能及与玻璃光学纤维的比较;表二给出了几种塑料光学纤维的主要性能。

纤维塑料光学纤维玻璃光学纤维光学性能光吸收系数一般为0.008~0.0018厘米1-,实验室公认最低损耗为20分贝/公里(650~680毫微米波段),接近一般玻璃的光吸收,紫外和远红外透过性能好光吸收系数一般为0.00002~0.00001/厘米1-,实验室中熔融硅的最低损耗≤0.2分贝/公里(在1.5微米)相应的吸收系数<106-厘米1-,近红外波段通过性能好热学性使用温度一般小于1000C,个别可短多组分光纤可用于3000C,石英光纤波导能时间在2000C下工作可用于4000C,塑料涂层玻璃光纤可用于1500C以下力学性能柔软性能好,耐弯曲,耐冲击,光纤直径一般不小于50微米,作导光束用的塑料单纤维直径可大于2毫米,这时柔软性能仍很好单纤维直径一般为5~150微米,大于100微米的光纤就不能弯曲,易折断化学稳定性在化学药品的浸蚀下,易着色,变质或老化优良耐辐射性较差差加工性能制作温度低,加工工艺简单制作需要高温(如石英光纤需要19000C),工艺复杂比重比重小,一般在1左右,因而质量轻比重大,一般在2.4左右,因而较重成本原料便宜,易于大量生产,成本低原料较贵,可大批生产,成本高四、应用领域塑料光纤已有3O多年的研究历史,最初应用于照明,后来应用于汽车、医疗和工业控制以及短距离通讯网络。

近年来,随着光纤到户(F1vrH)工程的推进,塑料光纤应用的市场空间将有很大的扩展。

4.1 FTTH随着北京奥运、西部大开发、“村村通”工程以及“三网合一”等各种新业务的蓬勃发展,接入网逐渐显得带宽不足。

F1vrH是宽带接入的最佳解决方案,是未来光通信的发展方向。

F1vrH是指将光网络单元安装在住宅用户或企业用户处,是F1vrx系列中除FTTD(光纤到桌面)外最靠近用户的光接入网类型。

在连接密集的用户接入网中,如果采用传统石英光纤组网,其安装和维护成本昂贵,用户不堪重负。

FTTH的光缆结构将会不断地推陈出新,光纤的使用会由现在的多模光纤发展到单模光纤再到塑料光纤。

利用塑料光纤芯径大、连接方便等优点组建局域网可以很好地解决最后100 m 的用户光纤问题。

采用塑料光纤作为中心路由器到服务器和各个楼层塑料光纤交换机的传输媒质,且交换机到用户也都用塑料光纤进行连接,可实现真正意义上的m H,大幅低F1v1_H工程建设费用,从而进一步推动F1vrH的发展步伐。

CYTOP 塑料光纤是日本旭硝子公司与日本庆应大学小池康博教授合作研究出的一种新型塑料光纤,具有低损耗(实验室的损耗达到10 dB/km以下)、宽带宽(1 km 内传输速率达 1 Gb/s)的特性,应用范围达100 m,能解决最后 1 km的用户接入问题,实现千兆FTTD。

日本旭硝子公司在2000年推出这种光纤的产品,其商标名为Lucina。

在日本政府工业和贸易部门的支持下,日本开放了千兆塑料光纤城市示范工程,将庆应大学的校园网塑料光纤化,还连接了小学、医院和公寓楼,演示了高速数据传输、流媒体通信、会议电视、远程医疗和数字视频广播。

在此基础上,日本从2003年起,首先在高层建筑中敷设CYTOP 塑料光纤千兆以太网。

在国内,中科院化学所与中国科技大学合作,成功研制出PMMA GI 塑料光纤,并于2000年在中科院化学所的图书馆构筑了中国第一个百兆塑料光纤网络,实现了FTTD,传输速率达百兆。

2004年,上海大学成功地构筑了中国第一个CYTOP 塑料光纤以太示范网。

实现了千兆FTTD。

4.2 汽车工业目前,包括数字音频和视频、导航系统以及通向其它车用总线的网关等在内的各种汽车终端应用不断涌现,车中的电子器件变得越来越复杂。

为了减轻电气配线重量,提高信号传输速度,排除电磁干扰,汽车制造商正在加快采用气囊与传感器的步伐。

作为传播信息的通道,塑料光纤具有不放射电磁噪音、质量轻的特点,汽车制造商已正式开始采用其来构筑车内LAN。

塑料光纤可以将车载、机载通信网和控制系统组成一个网络,将微机、卫星导航设备、移动电话、传真等外设纳入机车整体设计中。

通过由塑料光纤组成的网络,从接入的公用网络和国际互联网中为用户提供个人所需的音乐、电影、视频游戏和购物等服务。

目前,大量采用塑料光纤的车辆已经问世。

4.3 工业控制总线系统随着计算机和自动控制技术的高速发展,工业自动化水平提高到一个崭新的高度。

工业自动化根据其特点和使用方向可分为过程控制自动化、面向生产和制造业的自动化以及自动化测量系统(工业测量仪表)。

这些工业自动化系统的建立和发展都有一个共同特点,即由直接控制系统向集散型控制系统发展,而这种集散型控制系统的发展均以各种工业网络为基础。

对塑料光纤来说,工业控制总线系统是其最稳定和最大的市场之一。

通过转换器,塑料光纤可以与RS232、RS422、100 Mbps以太网以及令牌网等标准协议接口相连,高速传输工业控制信号和指令,避免了因使用金属电缆线路受电磁干扰而导致通信中断的危险,从而在恶劣的工业制造环境中提供稳定、可靠的通信线路。

4.4 消费电子标准1394b是消费电子领域的一套新标准。

此标准可使用多种传输媒介,包括5类铜缆线、塑料光纤以及玻璃材料光纤。

此外,1394b的最大传输速率也比1394a标准提高许多,超过400 Mbps,最高可达3.Gbps。

并且1394b明确指出将具有低损耗、高性能的塑料光纤作为传输介质之一。

4.5 军事通信在军事通信中,塑料光纤常用于高速传输大量的敏感、保密信息。

由于它是网络和传感器的安全耐用的理想材料,因而可广泛用于战斗机、直升机和军舰。

利用其重量轻、可挠性好、连接快捷及便于佩戴的特点,还可用于高科技军服中。

士兵穿上这种既轻便又防水耐磨的电脑化军服,能够插入通信网络下载、存储、发送和接收任务信号,可从头上方的显示器上看到信息。

塑料光纤不仅可用于军事常规通信领域,而且还可用于海下照明、导弹、运载火箭和电子对抗雷达等尖端领域。

另外,通过塑料光纤在飞机中组成通信网络,可从接入公共网络和国际互联网中为旅客提供电影、视频游戏、购物等服务,同时由于塑料光纤重量轻,可明显降低飞机载重量;通过塑料光纤可实现智能家电(家用PC、HDTV、电话、数字成象设备、家庭安全设备、空调、冰箱、音响系统和厨用电器等)联网,达到家庭自动化和远程控制管理;通过塑料光纤可实现办公设备的联网,如计算机联网可以实现计算机并行处理,办公设备间数据的高速传输可大大提高工作效率,实现远程办公PS 塑料光纤还可用于制作光纤工艺品,如花卉、盆景、动物和光纤壁画、广告牌等。

4.6 结论在光通信技术蓬勃发展的今天,极力推崇塑料光纤的专家们强调的是其网络成本的低廉价格。

国外对塑料光纤的研究投入了相当大的财力和人力,相比之下,我国对塑料光纤的研究则投入甚少,在研究、生产和应用等方面存在极大的差距。

同时,塑料光纤行业的进一步发展也遇到了以下一些需设法解决的阻碍因素:1)在目前的局域网中,与现有可升级的铜缆相比,使用塑料光纤的成本仍比较昂贵,因而企业在进行新线缆业务时会考虑光缆的使用率和价格是否合算;2)研究机构因缺少市场意识与企业合作不紧密,导致有些技术即使取得实质性进展却不能实用化,同时企业也较难及时获悉市场与技术方面的相关信息;3)整个塑料光纤行业统一标准制订与完善进展缓慢,不利于塑料光纤产业化;4)塑料光纤开发者自身将目标定得太高,将主要精力投入到高端产业中,而这些产业需要更高的进入门槛和更先进的技术,使得塑料光纤本应成为主流的市场仍在大量使用铜缆;5)缺少强有力的商业协会推动塑料光纤发展;6)高校缺少塑料光纤相关课程等。

相关主题