导电复合材料的制备及应用浅析摘要:随着电子工业及信息技术等产业的迅速发展,对于具有导电功能的高分子材料的需求越来越迫切。
本文详细介绍了导电高分子材料的分类,介绍了导电复合材料的导电填料的种类及性质,总结了复合型导电高分子材料的制备方法和应用情况。
关键词:复合型;导电高分子材料;制备及应用;1.前言通常高分子材料的体积电阻率都非常高,约在1010-1020Ω·cm之间,作为电器绝缘材料使用无疑是非常优良的。
但是,随着科学技术的进步,特别是电子工业、信息技术的迅速发展,对于具有导电功能的高分子材料需求愈来愈迫切。
世界各国无论是学术界还是产业界都在积极地对这一新兴功能材料进行研究与开发。
关于导电高分子的定义,到目前为止国外尚无统一的标准,一般是将体积电阻率ρV 小于1010Ω·cm的高分子材料统称为高分子导电材料。
其中将ρV在106-1010Ω·cm之间的复合材料称为高分子抗静电材料;将ρV在100-106Ω·cm之间的称为高分子半导电材料;将ρV小于100Ω·cm的称为高分子导电材料。
按照结构和制备方法的差异又可将导电高分子材料分为结构型导电高分子材料和复合型导电高分子材料两大类。
结构型导电高分子材料(或称本征高分子导电材料)是指分子结构本身能导电或经过掺杂处理之后具有导电功能的共扼聚合物,如聚乙炔、聚苯胺、聚毗咯、聚噬吩、聚吠喃等。
复合型导电高分子材料是指以聚合物为基体,通过加入各种导电性填料(如炭黑、金属粉末、金属片、碳纤维等),并采用物理化学方法复合制得的既具有一定导电功能又具有良好力学性能的多相复合材料。
目前结构型导电高分子材料由于结构的特殊性与制备及提纯的困难,大多还处于实验室研究阶段,获得实际应用的较少,而且多数为半导体材料。
复合型导电高分子材料,因加工成型与一般高分子材料基本相同,制备方便,有较强的实用性,故已较为广泛应用。
本论文主要研究了复合型导电高分子材料的制备以及应用。
2.复合型导电高分子材料2.1复合型导电高分子材料概述复合型导电高分子材料在工业上的应用始于20世纪60年代。
复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。
按照复合技术分类有:导电表面膜形成法、导电填料分散复合法、导电填料层压复合法三种。
复合型导电高分子材料的分类方法有多种。
根据电阻值的不同,可划分为半导电体、除静电体、导电体、高导电体。
根据导电填料的不同,可划分为碳系(炭黑、石墨等)、金属系(各种金属粉末、纤维、片等)。
根据树脂的形态不同,可划分为导电橡胶、导电塑料、导电薄膜、导电粘合剂等。
还可根据其功能不同划分为防静电、除静电材料、电极材料、发热体材料、电磁波屏蔽材料。
导电复合材料具有质轻、不锈、耐用、导电性能稳定、易于加工成型为多种结构的产品、可以在大围根据需要调节材料的电学和力学性能、成本低、适于大规模大批量生产等特点。
与结构型导电高分子材料不同,导电高分子复合材料大都已经过实验室研究阶段而进入了工业化生产阶段,其应用普遍,受到越来越多用户的欢迎。
2.2复合型导电复合材料几种导电理论复合型导电复合材料主要是通过在这类聚合物中添加抗静电剂或导电填料来制备导电复合材料。
由于加抗静电剂的导电复合材料导电性不稳定,因此目前主要利用加导电填料来制备各种聚合物基导电复合材料。
其导电机理有如下几种理论:(1)导电通道学说,此学说认为导电填料加到聚合物后不可能达到真正的多相均匀分布,总有部分带电粒子相互接触而形成链状导电通道,使复合材料得以导电。
这种理论已被大多数学者所接受。
(2)隧道效应学说,尽管导电粒子直接接触是导电的主要方式,但Polley 和Boonstra利用电子显微镜观察后,发现炭黑填充橡胶的复合体系,存在炭黑尚未成链且在橡胶延伸状态下亦有导电现象。
通过对电阻率与导电粒子间隙的关系研究,发现粒子间隙很大时也有导电现象,这被认为是分子热运动和电子迁移的综合结果。
(3)电场发射学说,Beek等人研究了界面电压-电流非欧姆特性问题。
他们认为由于界面效应的存在,当电压增加到一定值后,导电粒子间产生的强电场引起了发射电场,促使电子越过能垒而产生电流,导致电流增加而偏离线性关系。
由此提出“电场发射理论”。
聚合物基导电复合物材料的实际导电机理是相当复杂的,但现阶段主要认为是导电填料的直接接触和间隙之间的隧道效应的综合作用。
2.3导电填料的种类导电填料的种类很多,常用的可分为炭系和金属系两大类。
炭系填料包括炭黑、石墨和碳纤维等;金属系主要有铝、铜、镍、铁等金属粉末、金属片和金属纤维。
(1)碳系填料填充导电复合材料碳系导电填料有炭黑、碳纤维、石墨等。
目前,炭黑在聚合物基导电复合材料上的应用最为广泛,因为它不仅价格低,而且加入量少,导电性也好。
大量研究表明,炭黑粒子的尺寸越小,结构越复杂,炭黑粒子比表面积越大,表面活性基团越少,极性越强,则所制备的导电复合材料导电性越好。
如用粒度为30μm的乙炔炭黑填充玻璃纤维增强的191树脂时,仅需0.4%的体积含量,导电复合材料的体积电阻率就能下降到103-104Ω·cm;且随着炭黑含量的增加,其弯曲强度下降,这是由于炭黑与树脂的相容性差,加入后影响了树脂与玻璃纤维界面粘接,加入量越多,这种影响越明显。
现在对炭黑填充聚合物基导电复合材料的研究已从传统的改变炭黑的用量转向通过提高炭里的质量来提高其导电复合材料的导电性能。
如对炭黑进行高温处理,不仅可以增加炭黑的比表面积,而且可以改变其表面化学特性。
用钛酸酯偶联剂处理炭黑表面,在改善复合材料导电性能的同时,还能提高熔体流动性和材料的力学性能。
另外,新型导电炭黑也在进一步的研究之中。
除炭黑之外,石墨也是常用的导电填料之一。
石墨的导电性不如炭黑优良,而且加入量较大,对复合材料的成型工艺影响比较大,但能提高材料的耐腐蚀能力。
石墨主要有石墨粉和片状石墨两种,石墨粉的分散性较好,易形成导电通道;而片状石墨体积较大,虽会对树脂起增强作用,但不易形成均匀体系,材料的稳定性不易控制,某些性能重现性差,而且加入量过大时,片状石黑与树脂形成的界面处容易产生应力集中而使材料强度下降。
碳纤维也是一种较好的导电填料,其导电性介于炭黑和石墨之间,而且它具有高强度、高模量、耐腐蚀、耐辐射、耐高温等多种优良性能。
用碳纤维增强的不饱和聚酯、环氧、酚醛等复合材料已广泛应用于航空航天,军用器材及化工防腐领域。
但碳纤维加工困难、成本高,在一定程度上限制了它的发展。
(2)金属系填料填充导电复合材料金属系填料包括金属粉末和金属纤维,但金属粉末含量一般在50%(体积)左右时,才会使材料电阻率达到导电复合材料的要求,这必然使复合材料的力学强度下降。
另外,由于金属的密度远大于非金属的密度,因此在复合材料的成型过程中容易出现分层或不均匀现象,影响材料质量稳定性。
常用的金属粉末有铝粉、铁粉、铜粉、银粉、金粉等。
铝粉价格低,但铝的活性太大,其粉末在空气中极易被氧化,形成导电性极差的AL2O3氧化膜,即使加入量很大时也不易形成导电通道。
银粉、金粉虽然导电性优良,但价格昂贵,由此限制了其广泛使用。
故现阶段应用最广的为铁粉、铜粉。
金属粉末粒径的大小对导电复合材料的电阻率影响也较大,相同条件下,金属粉末粒径越小,越易形成导电通道,达到相同电阻率所需金属粉的体积含量越小。
与金属粉相比,金属纤维的应用更为广泛。
将金属纤维填充到基体聚合物中,经适当工艺成型后,可以制成导电性能优异的复合材料,其体积电阻率为10-3-100Ω·cm。
它们不仅可以在较少加入量的条件下达到理想的导电效果,还能较大幅度地提高复合材料的强度。
并且该复合材料比传统的金属材料质量轻、易加工,因此被认为是最有发展前途的新型导电材料和电磁屏蔽材料,金属纤维填充聚合物基导电复合材料将是以后研究的重点之一。
现在国外应用较多的是黄铜纤维,其次是不锈钢纤维和铁纤维。
黄铜纤维导电性能优良,仅需10%的体积含量就能使体积电阻率小于10-2Ω·cm,屏蔽效果达60dB。
不锈钢纤维作为填料不仅强度高,成型时不易折断,能保持较大的长径比,而且抗氧化性好,能使导电性能持久稳定。
另外,复合纤维填充聚合物基复合材料也在不断研究和应用之中。
如钢铝复合纤维,就是挤压成型过程中将钢丝周围包覆不同厚度的铝,这样既保持了铝的导电性,又提高了复合材料的强度。
还有镀镍石墨纤维,不仅使制备的复合材料有10-1-101Ω·cm的电阻率,而且也具有较好的增强效果及电磁屏蔽效果,在航空领域已被广泛应用。
3. 复合型导电高分子材料的制备方法3.1导电填料分散复合法导电填料分散复合法,主要用来制造导电橡胶、导电塑料、导电涂料、导电胶粘剂等。
可用于此方法的导电填料有炭黑、碳纤维、金属纤维、金属化玻璃纤维、金属化碳纤维、金属箔片、带条、镀银玻璃球及其它各种新型导电填料。
导电填料分散复合法是制备导电复合材料最常用的方法。
用导电填料分散复合法制备导电复合材料的步骤为:(1)选择导电填料和基体树脂;(2)配料;(3)共混;(4)成型(挤出、注射、模压等);(5)电性能检测。
导电填料分散复合法存在的问题主要有:(1)导电填料在制品中的分布往往不均匀,从而使制成品各处的电导率不一致;(2)导电填料与基体树脂之间的粘结性一般较差,尤其当导电填料含量较高时这一情况尤为明显。
而导电填料与基体树脂之间粘结不好,则会使成型后的导电复合材料制件的机械性能大大下降。
解决导电填料分布不均匀问题的方法一般是在共混时尽量使导电填料在基体树脂中分布均匀,而解决导电填料与基体树脂之间粘结问题则要在配方中加入偶联剂及其它加工助剂,同时在制品电学和力学性能不下降的情况下,尽量减少导电填料的用量。
所以,确定合适的配方,开发性能优良的偶联剂及其它加工助剂,研制新型导电填料是解决这一问题的出路。
3.2导电填料层积复合法导电填料的层积复合法是将碳纤维毡,金属丝网等导电层与塑料基体层叠合层压在一起,从而得到导电塑料的方法。
除了碳纤维毡、金属丝网外,镀金属的织物、金属化的塑料薄膜等也可以作为中间层从而与塑料基材形成夹芯结构。
AornKasei 公司制造了底层是添加铝箔片的塑料层、上层是不加铝箔片的塑料层的导电塑料制品。
美国道化学公司研制了金属化的PC 薄膜与ABS 薄膜树脂形成的层积复合塑料,其电磁屏蔽效果为35-40dB 。
cbaotBeigimu 公司研制了由低成本导电聚苯乙烯芯层和未填充导电填料的PPO 面层制造的层积复合导电塑料,用于一种计算机的罩壳。
导电填料层积复合法可以克服导电填料分散复合法所产生的一些问题,如导电填料分布不均匀,随填料量增加制品的机械强度下降、以及导电填料露出制品表面等,因此颇受不少导电高分子材料制造商的青睐。