当前位置:文档之家› 什么是量子通信技术

什么是量子通信技术

什么是量子通信技术?它的过去,现在,未来如何?量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。

量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。

量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。

高效安全的信息传输日益受到人们的关注。

基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。

主要包括量子通信和量子计算2个领域。

量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。

量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。

追溯量子通信的起源,还得从爱因斯坦的"幽灵"--量子纠缠的实证说起。

由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。

1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子"量子纠缠"(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。

从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。

量子纠缠证实了爱因斯坦的幽灵--超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。

在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(Quantum Teleportation)的概念。

量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。

量子通信概念的提出,使爱因斯坦的"幽灵(Spooky)" --量子纠缠效益开始真正发挥其真正的威力。

1993年,在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。

量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。

1997年在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。

这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。

实验中传输的只是表达量子信息的"状态",作为信息载体的光子本身并不被传输。

量子计算:构筑“数字城堡”的铜墙铁壁科学社会学的奠基人贝尔纳曾说:“科学与战争一直是极其密切地联系着的。

”今天,倘若我们要追溯风靡全球的信息化战争之科技源头的话,无疑是1946年世界第一台计算机“ENIAC”诞生所开启的电子信息科技革命。

然而,这一曾彻底颠覆机械化战争图景的电子信息科技,在遵循“摩尔定律”飞速前行了数十年之后,制约其进一步发展的系列问题日渐凸显:电子计算机的极限运算速度是否存在?越来越一体化的电子信息网络如何应对“网电空间战”?等等。

对此,近年来不断突破的量子信息科技正在开启新的机遇之门,势必在未来重新涂抹战神的面孔。

曾创作出《侏罗纪公园》和《失去的世界》等作品的著名科幻作家迈克尔·克莱顿,在科幻小说《时间线》中曾尝试用文学的笔调来想象量子计算的神奇。

其中,一家名为国际技术公司的经理们如此推销其眼中的高新科技:“普通的计算机用电子的两种状态计算,这两种状态被定为0和1。

但在20年前,理查德·费曼就提出,有可能利用电子所有的32个量子态来进行快速计算。

现在有诸多实验室正在试图制造这样的计算机。

它们的优点是难以想象的、强大的并行计算能力。

”作为科幻作品,克莱顿的小说中充斥着“量子多宇宙”“量子泡沫虫洞”“量子运输”“量子纠缠态”等令人既感新奇又感陌生的词汇,书中之“电子的32个量子态”说法也并不科学。

然而,克莱顿预言的量子“并行计算”的强大潜力和美好前景,如今却正在现实世界一步步得到印证。

具体而言,1965年,英特尔公司的创始人之一戈登·摩尔针对电子计算机技术的发展提出了“每18个月计算能力翻倍”的摩尔定律。

然而,由于传统技术的物理局限性,这一能力或将在未来10~20年之内达到极限。

据保守估计,2018年芯片制造业就将步入16纳米的工艺流程,业内专家则认为,16纳米制程已经是普通硅芯片的尽头。

事实上,当芯片的制程小于20纳米之后,量子效应就将严重影响芯片的设计和生产,单纯通过减小制程将无法继续遵循摩尔定律,而突破的希望恰在于量子计算。

从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储的数达2的250次方,比现有已知的宇宙中全部原子数目还要多。

无论在基础理论还是在具体算法上,量子计算都是超越性的。

因此,对量子计算的相关研究及量子计算机的具体研制已成为世界科学领域最闪亮的“明珠”之一。

比如,美国国防部对此就给予了高度重视,国防高级研究计划署(DARPA)专门制定了名为“量子信息科学和技术发展规划”的研究计划,其对外公开宣称的目标是,若干年内要在核磁共振量子计算、中性原子量子计算、谐振量子电子动态计算、光量子计算、离子阱量子计算及固态量子计算等领域取得重大研究进展。

科学社会学的奠基人贝尔纳曾说:“科学与战争一直是极其密切地联系着的。

”今天,倘若我们要追溯风靡全球的信息化战争之科技源头的话,无疑是1946年世界第一台计算机“ENIAC”诞生所开启的电子信息科技革命。

然而,这一曾彻底颠覆机械化战争图景的电子信息科技,在遵循“摩尔定律”飞速前行了数十年之后,制约其进一步发展的系列问题日渐凸显:电子计算机的极限运算速度是否存在?越来越一体化的电子信息网络如何应对“网电空间战”?等等。

对此,近年来不断突破的量子信息科技正在开启新的机遇之门,势必在未来重新涂抹战神的面孔。

近年来,谍战剧热播我国荧屏,围绕着夺取情报、破译密码,一个个斗智斗勇的故事,吸引了无数观众的眼球。

然而很多人并不知道,随着量子信息技术的发展,密码通讯正在迎来划时代的变化,一种永远无法破译的密码或将在不远的未来登上军事斗争舞台。

具体来说,目前的密码大都采用单项数学函数的方式,应用了因数分解或其它复杂的数学原理。

例如,在目前互联网上比较常用的RSA密码算法,就是应用因数分解的原理。

因为要计算两个大质数的乘积很容易,但要将乘积分解回质数却极为困难,这就使得密码很难被破解。

然而,美国科学家皮特·休尔却提出了“量子算法”,它利用量子计算的并行性,可以快速分解出大数的质因子,这意味着以大数因式分解算法为根基的密码体系在量子计算机面前不堪一击。

差不多同时,另一个著名的量子算法——“量子搜寻算法”也被提出,用该方法攻击现有密码体系,经典计算需要1000年的运算量,量子计算机只需小于4分钟的时间,从而使传统密码领域遭遇前所未有的挑战,以致有科学家宣称:“其意义不亚于核武器……一旦有些国家拥有了量子计算机,而另一些国家却没有,当战争爆发的时候,这就犹如一个瞎子和一个睁眼的人在打架一样,对方可以把你的东西看得清清楚楚,而你却什么都看不到。

”当然,量子计算机的出现虽然会对传统密码产生颠覆,但是量子信息同时也提供了一个守护神,即一种理论上无法破解的密码——量子密码。

由于采用量子态作为密钥,具有不可复制性,因而无破译的可能,量子密码的出现也因此被视为“绝对安全”的回归。

世界各国纷纷将其纳入国防科技发展战略之中。

如美国洛斯阿拉莫斯国家实验室就在研究量子局域网的密码体系和自由空间量子密码。

此外,英国国防部及欧盟各国也启动了类似的量子密码研究计划。

量子通信:“超光速”联通一体化战场神经网络这个世界上真的存在“超时空隧道”吗?对此,科学家给出的答案是,伴随着量子信息科技的持续发展,未来这一幻想不是没有实现的可能。

当然,这一说法今天看来依然不无夸张,但其所谓的与“量子纠缠”密切关联的“量子态隐形传输”则正在变为现实。

通俗而言,两个相距遥远的陌生人不约而同地想做同一件事,好像有一根无形的线绳牵着他们,这种神奇现象可谓“心灵感应”。

与此类似,所谓量子纠缠,是指在微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,就能立即使另一个粒子状态发生相应变化。

量子通信正是利用量子纠缠效应进行信息传递的一种新型通信方式。

此种通信技术若能得以实现,其影响将是划时代的。

量子通信系统,按其所传输的信息是经典还是量子而分为两类。

前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。

所谓隐形传送指的是脱离实物的一种"完全"的信息传送。

从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。

但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。

因此长期以来,隐形传送不过是一种幻想而已。

1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未省量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原地。

其基本思想是:将原物的信息分成经典信息与量子信息两部分,它们分别经由经典通道与量子通道传送给接收者。

经典信息是发送者对原物质进行某一种测量而获得的,量子信息是发送者在测量里未提取的其余信息;接收者在获得这两种信息之后,就可以制备出原物量子态完全复制品。

这个过程中传送的仅仅是原物质的量子态,而不是原物本身。

发送者甚至可以对这一个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。

在这个方案中,纠缠态的非定域性起着至关重要的作用。

量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。

在量子力学中能够以这样的方式制备两个粒子态,在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联。

量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有极其重要意义,而且能用量子态作为信息载体,通过量子态的传送实现大容量信息的传输,实现原则上不可破译的量子保密通信。

相关主题