重金属捕集剂应用概述(上海轻工业研究所有限公司研发中心杨林)摘要:本文介绍了重金属捕集剂在处理重金属离子的原理,以及目前应用较多的重金属捕集剂类别和研究现状,重点介绍了应用最为广泛的DTC类重金属捕集剂的应用范围和特点,同时与化学沉淀法经济性进行对比。
关键词:重金属捕集剂处理种类 DTC 应用前言重金属捕集剂是一种操作简便、液状的、高分子有机化合物、可以迅速将废水中重金属离子沉淀去除的化学药剂。
重金属捕集剂在常温下与废水中各种金属离子如:铬、镍、铜、锌、汞、锰、镉、钒及锡等迅速反应,生成水不溶性的高分子螯合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。
目前,传统化学沉淀法无法完全达到环保要求,而重金属捕集剂经有关应用证明:处理方法简单(可在原化学沉淀法装置上直接投放),费用低,能做到多种重金属离子共存的情况下一次处理后,即可达到环保要求,即使对废水中重金属共存盐与络合盐(如:EDTA、NH3、柠檬酸等)也能充分发挥作用,并具有絮凝体粗大、沉淀快、脱水快、后处理容易、污泥量少且稳定无毒等特点。
可广泛应用于电镀工业、电子工业、石化工业、金属加工业、垃圾焚烧处理、电厂烟道气洗涤等行业的含重金属离子废水处理。
1 重金属捕集剂作用原理重金属捕集剂通常含有O、N、P、S等配位原子,如羟肟酸类重金属捕集剂主要是以O为配位原子,磷酸类重金属捕集剂主要以P为配位原子。
由于S既是配位原子,又可以结合重金属离子形成硫化物沉淀;另外从酸碱理论上说,重金属离子一般属于弱酸或中间酸,而有机硫化物则属于软碱或中间碱,二者易结合生成稳定的络合物。
因此市售的很多重金属捕集剂均为有机硫类。
图1.1为常见有机硫类重捕剂基本结构及捕集重金属的原理。
2 重金属捕集剂种类与研究2.1 DTC类重金属捕集剂二硫代氨基甲酸盐(DTC:Dithiocarbamate),早在19世纪中期就已经实现实验室合成,但DTC衍生物作为重金属捕集剂的研究始于20世纪中叶,美国20年代八十年代申请了一系列合成DTC重捕剂的专利。
我国对DTC类重金属捕集剂的研究起步较晚,20世纪末期清华大学蒋建国等人合成了一系列DTC产品用于废水和废气中重金属的去除。
图1.1为常见有机硫类重捕剂基本结构及捕集重金属的原理(备注:M指常见的二价重金属如Cu2+、Zn2+、Cd2+等)DTC中二硫代羧基的硫原子半径比较大、且带负电,易极化变形而产生负电场,它能够捕捉阳离子并趋向成键,生成难溶性氨基二硫代甲酸盐(DTC盐)沉淀而使重金属离子去除,且形成的沉淀物化学性质稳定,无二次污染。
此外,DTC 通常由伯胺或仲胺在碱性环境中与二硫化碳反应合成,本质是二硫化碳取代氨基上的氢原子。
其合成过程简单,合成条件温和,捕集重金属效率高,因此成为目前应用最多的一类重金属沉淀剂。
按照分子量的大小,DTC可以分为小分子沉淀剂和高分子螯合树脂;按照原料的来源来分,DTC可以分为化工合成的DTC重捕剂和天然高分子改性的DTC重捕剂。
由于DTC类重金属捕集剂与重金属离子反应生成的螯合物具有较强的稳定性,其在重金属废水处理应用方面最为广泛。
2.2 黄原酸类重金属捕集剂黄原酸是应用广泛的重金属捕集剂种类之一,通常由醇和二硫化碳在碱性环境中合成,是羟基中的氢原子被二硫化碳取代后生成的产物。
黄原酸类捕集剂包括乙基黄原酸盐和天然高分子改性的黄原酸酯。
黄原酸盐,又名为黄药,1815年由Zdse首先合成。
乙基黄原酸钾和乙基黄原酸钠常用在分析化学和冶金工业中常用作铜和镍的沉淀剂。
Chang等人用乙基黄原酸钾去除废水中的络合铜,研究表明乙基黄原酸钾是一种有效的重金属去除剂,能将铜的浓度从50,100,500,1000mg/L降到排放标准以下,而且其与铜形成的化合物达到毒性特征沥滤方法规定的无毒无害物质的标准。
但这种方法的缺点是乙基黄原酸盐不稳定,尤其在低pH值的条件下乙基黄原酸钾会分解出二硫化碳,产生二次污染。
有机天然高分子改性黄原酸酯在使用过程中没有残余硫化物的存在,因此在重金属废水处理领域应用更广泛。
这类研究最多的天然高分子是淀粉和纤维素,因为它们来源广泛,价格低廉,且分子中含有羟基。
淀粉基黄原酸酯和纤维素基黄原酸酯分别是淀粉和纤维素与CS2在碱性环境下合成。
2.3 TMT类重金属捕集剂三巯三嗪三钠TMT(trimercaptotriazine)也叫2,4,6-三硫醇基钠硫代三嗪,曾经被美国评为最有前途的重金属捕集剂产品。
TMT通常由三聚氯氰和NaHS或Na2S在NaOH溶液中合成。
TMT类重金属捕集剂最大的优点是本身的生物毒性较小,是一种环境友好型有机硫重金属捕集剂。
TMT-55是美国Degussa公司1993年研制的产品,国内的TMT商品有TMT-15系列和TMT-18系列,其中TMT-18分为ABCD四种,分别用于处理四种不同行业的重金属废水。
TMT对大多数的单价和二价金属均有较强的捕集作用,不仅可以捕集离子态的重金属离子,也可以捕集某些状态下的络合态重金属,如EDTA,柠檬酸盐等,TMT与重金属形成的沉淀物为粗絮体,易于固液分离和脱水,而且TMT用于处理重金属废水时的pH应用范围较广,在酸性环境中仍然有较好的捕集效果,因此有着良好的市场应用前景。
廖冬梅等人用T MT-15处理铜氨络合物废水,表明TMT能与铜强力螯合并沉淀。
邓樱花等人用TMT-18捕集废水中的Pb和Hg,研究表明在pH=4,室温静置40min后TMT-18对铅和汞的去除率均超过99.6%。
TMT的缺点是和某些重金属结合的沉淀物不稳定,在水体中有二次溶出的风险。
Htmke等人研究TMT-Hg的不同形态下的溶解性,表明其中几种形态的Hg-TMT在水体中能溶解。
Matloc k等人随后又对Cd-TMT,Pb-TMT,Zn-TMT的溶解度和稳定性进行研究,表明在pH=3或是pH=6时,这三种重金属和TMT形成的沉淀物比相应的硫化物沉淀和氢氧化物沉淀的溶解度更大。
2.4 STC类重金属捕集剂STC(三硫代碳酸钠)是一种硫代碳酸盐,它的商品名是Thio—Red,外观为橘红色液体,STC最常用的合成方法是用二硫化碳和氢氧化钠反应,方程式为:3CS2+6NaOH—>2Na2CS3+Na2C03+3H20。
因此,STC是合成DTC和黄原酸酯过程中的一种副产物。
此外,STC还可以由二硫化碳和硫化钠反应生成。
STC在20世纪80年代就已经用于去除重金属,elfline等人将STC用于去除废水中的重金属,研究表明和黄原酸酯类相比,STC结合重金属产生的污泥不需要经过二次处理,并认为STC捕集重金属的原理是STC结合重金属生成硫代碳酸盐如CuCS3,HgCS3,PbCS3,ZnCS3等去除重金属。
henke等人通过X射线衍射研究表明STC与重金属结合生成硫化物沉淀而不是硫代碳酸盐,因为硫代碳酸盐不稳定容易分解为二硫化碳和硫化物沉淀。
STC在使用的过程中产生二硫化碳气体,容易产生二次污染,这极大地限制了它的应用。
很多研究表明STC与其他的重金属捕集剂有显著的协同作用。
如Geraldine等人例将STC和DTC一起用于去除废水中的镍,结果表明STC的加入能使DTC捕集镍后形成沉淀的颗粒增大,提高沉降速度,两种药剂具有协同作用。
J.A.Venter 等人研究表明STC和黄原酸酯类重金属捕集剂同时使用也具有协同作用。
2.5 新型的有机硫类重金属捕集剂双巯基类重金属捕集剂是近年来研究的热点。
Matlock等人先后合成了两种芳香族的双巯基配位体结构:2,6一二酰胺吡啶乙硫醇(PyDET)和1,3一二苯甲酰胺乙硫醇(BDET)。
前者通过吡啶和酰胺基引入3个N作为新的配位原子,与巯基的两个S形成五元环结构;后者通过酰胺基引入2个N作为新的配位原子,与巯基的两个S形成稳定的四面体结构。
这两种新的螯合剂与TMT仅仅依靠S原子和重金属结合形成沉淀相比,能显著增强重金属沉淀物的稳定性。
但这两种新的螯合剂存在的问题是合成过程比较复杂,合成原料的价格昂贵,与重金属反应时间较长,如去除50ppm的Cu2+,需要的反应时间长达4个小时,这在实际应用中会增加处理的费用。
Hutchison等人研究了烷基一硫醇配体(3S2SH),利用C链中的两个S原子和巯基中的两个S原子形成正四面体结构捕集重金属,研究表明脂肪族的硫醇类配体可以和重金属形成稳定的沉淀物,但是和芳香族的硫醇类相比,脂肪族的硫醇可以降低生产成本。
二硫代磷酸盐类也是一种新型的有机硫类重金属捕集剂。
Xu Ying等人用五硫化二磷和丙醇在碱性溶液中合成一种新的二丙基二硫代磷酸盐重捕剂。
二硫代磷酸类配体的结构和DTC,黄原酸酯类的结构相似,不同的是CS2取代P上的H而不是取代N或是O上的H,捕集原理也相似,4个S在重金属周围形成稳定的四面体网状结构,二硫代磷酸可以在酸性溶液中螯合重金属离子形成稳定沉淀物,和硫醇类重捕剂相比,二硫代磷酸盐类配体捕集重金属的时间缩短,有利于降低工业处理成本。
国内高鸣远等人也曾用二烃基二硫代磷酸盐捕集剂去除Cu2+、Pb2+、Cd2+、Hg2+,去除率均可达99%以上。
3 DTC类重金属捕集剂应用情况DTC类重金属捕集剂凭借其与金属离子极强的络合能力,对多种重金属包括络合态的重金属均有较高的去除率,生成的螯合物沉淀无稳定无二次污染。
而且DTC合成条件温和,操作简单,是目前市场上应用最广泛的重捕剂种类之一。
因此合成、研制DTC类重金属捕集剂具有重大的意义。
市售的DTC类重金属捕集剂产品种类繁多,价格不等。
多数产品有效成分含量不明,使用前需要通过小试实验确定重捕剂的最佳投加量。
对于不同浓度的含重金属离子废水的处理,加入量也可通过ORP来自动控制。
而且市售的重金属捕集剂在pH<6时对游离态重金属离子的去除效果较差,或对络合态重金属的去除效果较差,产品的广谱性能有待进一步提高。
3.1 DTC小分子沉淀剂DTC小分子沉淀剂是用小分子量的伯胺或者仲胺和二硫化碳在强碱中反应制得。
主要应用于成分复杂的重金属废水处理。
其优点是原料廉价易得,产品水溶性好,应用方便。
缺点是合成的产物和重金属结合所产生的矾花较小,沉降时间较长,不易于分离沉降,所以使用过程中需要加入PAC,PAM等絮凝剂助凝,增加处理成本。
因此,提高絮凝性能是小分子DTC的研究热点。
为了提高DTC 的絮凝作用,最常用的途径是引入交联剂使分子量增大,从而提高其沉降速度,常见的交联剂有环氧卤丙烷,l,2.二氯乙烷,甲苯等。
Mariya等人用环氧氯丙烷和环氧溴丙烷作交联剂使小分子的DTC连结成大分子,改善其絮凝作用,提高其沉降速度。
Carey等人用环氧氯丙烷做交联剂合成了具有支链结构的可溶性DTC聚合物并成功应用于重金属的处理。