纳米二氧化钛研究现状【摘要】本文简述了纳米TiO2的常见应用,纳米级TiO2的优良性能,特备是化学稳定性及热稳定性等方面性质。
重点综述了纳米TiO2常见制备方法,例如溶胶—凝胶法、气相法、液相法等。
并阐述纳米TiO2的光催化性质及应用前景。
【关键词】纳米TiO2;溶胶—凝胶法;气相法;液相法;光催化【正文】一、前言二十世纪纳米技术兴起并迅速发展,由于纳米材料的独特性质使它在科学技术领域占据重要地位。
我们把粉体粒径小100nm 的粉体称作纳米粉体。
纳米粉体具有宏观块材所没有的奇特性质,如量尺寸效应,宏观隧道效应等。
这些奇特的性质决定了纳米粉体的广阔运用前景。
纳米粉体中纳米TiO2粉体目前在能源、化工、冶金、半导体材料、光催化材料、太阳能的储存与利用、光化学转换、精细陶瓷等方面得到广泛应用,所以合成纳米TiO2已经成为人们广泛关注的热点。
纳米TiO2的制备方法有气相法、液相法。
此两种方法各有其优缺点。
气相法制备的TiO2纳米粒径小,单分散性好但能耗大,成本较高。
与气相法相比液相法制备纳米TiO2方法简单、易操作、成本低,但制备的TiO2纳米形貌不易控制。
本文综述了近年来制备纳米TiO2的常见方法,客观的分析和评价了各种方法的优缺点。
二、纳米TiO2的性能纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3 种晶型。
其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水和稀酸,在一定条件下微溶于碱和热硝酸,纳TiO2热稳定性也比较好。
纳米TiO2的一个显著特点是他具有半导体性质,它的禁带宽度较宽,其中锐钛矿为3.2eV,金红石为3.0eV,当吸收一定波长的光子后价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+三、纳米二氧化钛的制备制备纳米TiO2的方法很多。
根据物质的原始状态可分为:固相法、液相法、气相法;根据研究纳米粒子的学科可分为:物理方法、化学方法、物理化学方法;根据制备技术可分为:机械粉碎法、气体蒸发法、溶液法、激光合成法、等离子体合成法、射线辐照合成法、溶胶—凝胶法等。
3.1等离子体法等离子体法是通过激活载气携带的原料形成等离子体,再加热反应生成超微粒子的方法。
以TiCl4为原料,氢气为载气,氧气为反应气体,应用频率为2450MHz的微波诱导可合成有机膜包裹的TiO2。
1992年,日本东北大学采用等离子体(ICP)喷雾热解法以Ti的氯化物为原料制得了Ti的氧化物的超微粉。
等离子体喷雾法是利用等离子体喷枪能产生50000K高温的特点,将这种喷枪的喷出物急骤冷却而生成纳米级的超微粒子。
3.2水解法水解法主要是利用金属盐在酸性溶液中强迫水解产生均匀分散的纳米粒子。
已有报道,在硫酸根离子和磷酸根离子存在条件下,用20min 到两周左右缓慢地加水分解氯化钛溶液时可得到金红石型纳米TiO 2。
水解法又可以分为很多种,以下是几种常见的水解法:3.2.1.TiCl4氢氧火焰水解法 该法是将TiCl 4气体导入氢氧火焰中(700~1000℃)进行水解,其化学反应式为: TiCl 4(g )+2H 2(g )+O 2(g )→TiO 2(s )+4HCl (g ) 这种工艺制备的粉体一般是锐钛型和金红石型的混合型产品,纯度高、粒径小、表面积大、分散性好、团聚程度较小,但成本较高。
3.2.2.钛醇盐气相水解法 该工艺最早由美国麻省理工学院开发成功。
其化学反应式为: nTi(OR)4(g)+4nH2O (g)→nTi(OH)4(s)+4nROH(g) nTi(OH)4(s)→nTiO 2·H 2O(g) nTiO 2·H 2O(s)→nTiO 2·nH 2O(g)日本某公司以氮气、氦气或空气作载气,将钛醇盐蒸汽和水蒸气导入反应器的反应区,进行瞬间混合和快速水解反应而制得纳米TiO 2。
这种方法可以通过改变反应区内各种参数来调节所制得的纳米TiO 2的粒径和粒子形状[4]。
3.2.3.碱中和水解法 该法主要是以TiCl 4或TiOSO 4为原料,将其配制成一定浓度的溶液后,加入碱性溶液进行中和水解或加热水解,所得二氧化钛水合物经解聚、洗涤、干燥和煅烧处理即可得纳米TiO 2。
这种方法可以通过改变煅烧温度得到不同晶型的纳米二氧化钛产品。
此法原料来源广泛、成本较低,只要严格控制工艺参数就能得到分散性好、粒径小、粒度分布窄的纳米二氧化钛粉体。
这种方法是液相法中最具有发展潜力的方法。
3.2.4.钛醇盐水解法 以钛醇盐为原料,通过水解和缩聚反应制得溶胶,再进一步缩聚得到凝胶,凝胶经干燥和煅烧处理即可得纳米TiO2[4]。
其化学反应式为: 水解:Ti(OR)4+nH2O →Ti(OR)(4-n)(OH)n +nROH 缩聚:2Ti(OR)(4-n)(OH)n →[Ti(OR)(4-n)(OH)(n-1)]2O+H2O 该法最大的缺点是原料成本高,制得的纳米TiO2颗粒间易团聚。
3.3.热合成法 以水或有机溶剂作溶媒,在内衬耐腐蚀材料的密闭高压釜中加入纳米二氧化钛的前驱体,按一定升温速度加热,待高压釜达所需温度值,恒温一段时间,卸压后经洗涤、干燥即可得纳米TiO2。
当以有机溶剂作溶媒时,在Ti 和H2O2生成的TiO2·xH2O 干凝剂中,以CCl4作溶剂,在温度90℃下可制备出超微锐钛型TiO2。
3.4.溶胶—凝胶法 溶胶—凝胶法主要是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥,焙烧去除有机成分,最后得到无机材料。
该法工艺简单,易于操作,是目前用得比较多的方法。
3.4.1.方法一 将Ti (OBu )4在搅拌条件下缓慢滴加到无水乙醇中形成透明溶液(A ),另将稀HNO3中加入无水乙醇和二次蒸馏水,形成透明溶液(B ),将B 溶液在剧烈搅拌下缓慢地滴加到A 溶液中,形成透明溶胶,放置数日得到其凝胶,干燥、焙烧即可得纳米TiO2粉体[7]。
3.4.2.方法二 将10mlTiCl4缓慢滴入40ml 氨水中,抽滤得白色沉淀,洗涤至无Cl —,烘干,称量。
取少许溶于浓草酸得草酸氧钛溶液。
在草酸氧钛溶液中加入柠檬酸和乙酸铵,80℃加热搅拌4~6h 得透明凝胶,将此透明凝胶放入烘箱,在150~200℃使其炭化,然后在马弗炉里500℃灼烧即可得纳米TiO2。
3.4.3.方法三 钛醇盐溶于溶剂(一般选用小分子醇作为溶剂)中形成均相溶液,钛醇盐与水发生水解反应,同时发生失水和失醇缩聚反应,生成物聚集形成溶胶,经陈化,溶胶形成三维网格而形成凝胶,干燥凝胶以除去残余水分、有机基团和有机溶剂,即可得到纳米TiO2粉体。
3.4.4方法四郭俊怀等人在快速搅拌下,将浓氨水缓慢加入到TiO2的钛盐溶液中,直至溶液变为粘稠状胶体,然后调节pH到7,陈化1h后,进行浓缩、烘干,待水分含量达10%左右后成球处理,过0.25mm筛后,加入适量乙醇,在70℃下烘干,并进一步在450℃下煅烧2h即制得了纳米TiO2。
1.4.5.方法五陈晓青等人将20ml无水乙醇与10ml钛酸四丁酯倒入分液漏斗混合均匀,打开漏斗活塞,在40℃的水浴中加热条件下,将混合液逐滴搅拌加入事先加了20ml无水乙醇和25ml冰乙酸的烧杯中。
控制滴速为1d/s,滴加完毕后再加入0.7gPEG—4000。
然后滴加浓硝酸,调节pH值约为 1.0时,将该透明溶液移到烧杯中,在40℃的水浴加热中超声振荡15min使烧杯中生成淡黄色凝胶,放入冰箱,在-6℃冷冻0.5h,使凝胶结冰,再在-50℃下冷冻干燥2h,然后取出松软的干凝胶粉用玛瑙研钵研磨,在空气氛中置入马弗炉中,以5℃/min升温速度在400℃煅烧2h,即得纳米TiO2。
3.5溅射法该法主要是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,把两电极间控制在0.3~1.5KV,使Ar气在两电极间的辉光作用下形成离子,从而冲击阴极靶材表面,使靶材表面原子蒸发出来形成纳米粒子,并在附着面上沉积下来。
沈杰[10]等人就以TiO2为靶材、氩气为溅射气体,控制溅射气压为1Pa,射频溅射功率为150W、频率为13.56MHz,将真空室的极限真空抽至1×10-4Pa,再以清洗干净的普通载玻片和ITO玻璃为基板,不加温情况下使薄膜沉积2h,再在300℃~500℃下退火1h制得了纳米TiO2薄膜。
除了以上介绍的方法外,还有许多方法可以制备纳米二氧化钛。
如:激光化学法、强光离子束蒸发法、均匀沉淀法等。
其中,激光化学法主要是通过用CO2脉冲激光聚焦辐照TiCl4+ O2体系,制得非晶态TiO2粒子[4];强光离子束蒸发法主要是通过强光离子束辐照钛靶,产生钛原子与周围的氧气发生反应,生成超微TiO2粒子;均匀沉淀法主要是以H2SO4法制备钛白粉中的中间产物——钛液为原料,外加金红石型TiO2品种为促进剂,以十二烷基磺酸钠为表面活性剂,尿素为沉淀剂,制备出纳米金红石型TiO2分子。
四、纳米TiO2的光催化性质由于颗粒尺寸的细微化,纳米材料产生了块状材料所不具备的表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应。
与常规材料相比,纳米级TiO2粉体具有以下特性:(1)比表面大;(2)磁性强;(3)光吸收性能好,且吸收紫外线的能力强;(4)表面活性大;(5)分散性好,所制悬浮液稳定;(6)热导性好;(7)可塑性强等。
其中对纳米TiO2光催化性质的研究最为活跃,应用也最为广泛。
纳米TiO2的光催化性质主要是由于纳米级的TiO2粒径小,表面原子多,因此光吸收效率高,从而增大了表面光生载流子的浓度,另一方面,纳米TiO2比表面积大,吸附能力强,因此,TiO2的表面吸附的OH—、水分子、O2—表面态增多,由此会带来含氧小分子活性物种也随之增加,从而提高了反应效率。
另外,由于纳米TiO2的氧化还原电位也发生变化,由光激发而产生的价带空穴具有更正的电位,因而氧化还原能力增加。
但TiO2也有其自身局限性,如禁带宽度大,需在近紫外光下才能激发电子产生电子空穴时,对太阳光的利用率仅占4%,且易于复合。
虽然TiO2光催化剂具备活性高、抗光腐蚀性强、本身无毒等特点,在去除各种环境介质中难降解污染物方面有着很好的应用前景,但粉尘状的纳米TiO2颗粒细微,在水溶液中易于凝聚,不易沉降,催化剂难以回收,活性成分损失大,不利于催化剂的再生和再利用,而且TiO2粉体或膜催化剂在使用过程中往往出现失活现象。
在实际生活中,为了提高二氧化钛材料的光催化活性,往往要求TiO2的粒径小到几十甚至几个纳米,但这又会恶化TiO2对太阳光的有效吸收。