农作物空间格局动态变化模拟模型(CROPS)构建夏天1,2, 吴文斌1,2,*, 余强毅1,2, 杨鹏1,2, 周清波1,2, 唐华俊1,2(1.农业部农业信息技术重点实验室,北京100081;2.中国农业科学院农业资源与农业区划研究所,北京100081)摘要:农作物空间格局指特定区域内农作物种植结构、空间分布等信息,是农业土地系统的核心内容之一,也是农业结构调整的重要依据。
随着空间模拟技术的发展,农业土地系统的时空动态表达成为可能,但传统模型方法更多关注土地利用类型的转化,而忽视耕地内部农作物格局时空特征的表达。
本研究基于CLUE-S土地利用变化模拟模型,进行了概念模型设计、框架和模块重建、参数本底化和校正,研究并提出一个适用于我国农作物空间格局动态变化模拟模型(CROPS,Crop Pattern Simulator)的可行架构,使其能够实现区域尺度土地利用变化与农作物空间格局变化的双层动态模拟。
CROPS模型采用了两层次嵌套模拟的模型结构,第一个层次实现对耕地空间格局动态变化过程和状态的表达,第二层次基于第一层次的模拟输出的耕地空间格局,实现耕地内部的农作物空间格局动态变化的有效模拟。
CROPS模型主要包括非空间和空间两个大模块,空间模块又包括空间模块I和空间模块II。
CROPS模型在东北三省进行了区域应用,结果表明,模型总体模拟效果较好,能够科学合理的表达耕地空间格局和农作物空间格局的动态变化过程。
关键词:农作物空间格局;动态变化;CROPS模型0引言农作物空间格局特指一个区域内农作物种植结构、分布、熟制和种植方式等信息[1],是农业土地系统的核心内容之一。
一方面,农作物空间格局能够反映蕴藏于农业土地系统内部的诸多服务功能,如粮食安全、农田碳库、生物质能源生产等;另一方面,其反映了空间范围内人类利用农业生产资源的状况,是农作物结构调整和优化的重要依据[2-4]。
因此,开展农作物空间格局变化过程及特征研究具有较高的实用价值和重要的科学意义。
近年来,国内外很多学者针对农作物格局及其变化进行了相关研究[5]。
统计调查方法是较早且较为常用的方法之一,即以一定的行政区为基本单元进行农作物面积统计分析[6, 7],但这种方法往往忽略了分析单元内部的空间异质性,而且主观性较强。
随着遥感、地理信息系统等空间信息技术的发展,农作物格局的空间显性表达(Spatially-explicit representation)逐步成为可能。
如[8]利用MODIS遥感数据提取了区域农作物种植结构;[9]同样利用MODIS 数据,实现了我国南方15省(市、自治区)各类水稻(早稻、晚稻和单季稻)种植面积的快速识别;Gao利用航片和遥感影像(TM/ETM+)分析了中国黑龙江省1958,1980,2000三个时间段水稻空间格局变化情况[10]。
Montero利用GIS技术构建了藤类植物生长分布模型[11][12]模拟展示了新疆棉花种植面积时空格局演变特征,并揭示当地棉花种植业发展的主要驱动力;吴文斌利建立了农作物播种面积变化模拟系统,分析研究了2005-2035年间世界主要农作物(水稻、玉米、小麦和大豆)播种面积变化的数量特征和空间格局[13]。
自1997年至今,美国农业部国家农业统计中心(USDA-NASS,National Agricultural Statistics Service of the US Department of Agriculture)不惜花费大量人力物力,将多源中高分辨率遥感影像与统计调查数据相结合,制作了每年一期的耕地内部作物分布图(CDL,Cropland data layers),供后续研究使用[14]。
不难发现,遥感技术是提取农作物空间分布信息的有效方法,但其相对成本较高,不利于获取大区域、长时间序列的农作物空间格局及其动态变化特征。
而空间模拟技术作为遥感夏天为博士后吴文斌为副研究员余强毅为助理研究员杨鹏为研究员周清波为研究员唐华俊为研究员通讯作者:吴文斌Email:wuwenbin@基金项目:国家自然科学基金项目(40930101,40971218,41271112),国家重点基础研究发展计划项目(“973”计划)(2010CB951504)技术的重要补充,能够较为省时省力的表达地理空间要素的分布、格局与变化过程[3],但目前相关模型研究多停留在土地利用变化模拟方面,较少涉及耕地内部农作物空间格局的模拟表达[4, 15]。
针对此问题,本研究充分利用CLUE-S(Conversion of Land Use and its Effects at Small region extent)土地利用变化模拟模型的理论和方法[16],经过改进、重建、参数本地化和校正,研究并提出一个适用于我国的农作物空间格局动态变化模拟模型(CROPS,Crop Pattern Simulator)的可行架构,使其能够实现区域尺度土地利用变化与农作物空间格局变化的双层嵌套动态模拟。
此外,本研究选取我国东北地区(辽宁、吉林、黑龙江)进行模拟实验,测试模型的运转情况,并简要介绍了模型模拟的相关结果。
1 CROPS的概念模型农业土地利用是人类为了自身的生存和发展需求而有意识地对农业土地资源进行开发、经营和利用的活动[17-19]。
耕地是农业土地利用的最重要形式,为农作物生长、发育和成熟提供必备的自然生态环境,耕地和林地、草地等其它土地利用类型相互影响并处于动态变化之中。
受多种因素影响,农作物空间格局不断发生变化,包括耕地内部不同作物之间的相互更替或转换,也包括和耕地外部其它土地利用类型的转换。
因此,模拟分析农作物空间格局变化的前提是掌握耕地的空间格局动态变化,因为耕地为农作物空间格局变化提供必要的空间区间和范围。
基于该思路,本研究基于CLUE-S模型提出了CROPS模型构建的概念模型(如图1)。
第一个层次通过对不同土地利用类型之间动态变化的模拟,实现对耕地空间格局动态变化过程和状态的表达。
第二层次基于第一层次的模拟输出的耕地空间格局,实现耕地内部的农作物空间格局动态变化的有效模拟。
为实现不同层次的空间模拟,CROPS模型基于空间动力的学原理,将区域范围内的土地利用格局和农作物种植格局可以视为一个整体的系统,在自然环境和社会经济等驱动力因素的共同作用下,区域系统空间结构状态或各状态要素空间格局的演变,并且该地区的土地利用格局和农作物种植格局处于动态平衡状态。
同时,该地区的农作物空间格局变化主要发生在耕地内部,受到耕地的空间分布区域限制。
在不同的层次下,通过分析土地利用类型或农作物类型空间分布与自然地理和社会经济等驱动力因素之间的相互作用,进而实现土地利用类型或农作物类型面积总量在空间位置的分配。
该概念模型不仅充分发挥了CLUE-S模型在传统土地利用类型转换或突变(如草地转耕地或耕地转林地)过程模拟方面的优势和特点,也扩展了模型的功能和应用领域,实现了土地利用类型稳定下的渐变(如农作物类型更替)过程模拟,实现了两个层次的有机嵌套模拟。
图1 CROPS概念模型2 CROPS模型的基本模块基于图1的CROPS概念模型,本研究提出了农作物空间格局模拟模型的基本框架,如图2所示。
CROPS模型工作流程为:首先进行第一层次(土地利用层)的空间格局模拟,在此基础上,利用第一层模拟的耕地格局作为控制,在耕地内部进行第二层次(农作物层)的空间格局模拟。
从模型每一层的组成模块看,CROPS模型主要包括非空间和空间两个大模块,即需求模块和空间分析与分配模块。
图2 CROPS模型结构图2.1 非空间模块非空间模块为输入研究对象需求功能,该模块主要用于控制在历史上各种驱动力因素影响下的研究对象数量变化,或者未来不同情景条件下的研究对象数量变化情况。
该研究对象需求决定空间模块中模拟分配的土地利用类型或农作物的总面积。
在CROPS模型中,第一层次的非空间模块主要计算各土地利用类型的土地面积需求,第二层次的非空间模块则主要计算不同农作物类别的土地面积需求。
非空间模块的输入数据主要为历史或者未来不同情景下的土地利用数据和农作物种植数据。
通常情况下,历史农作物空间格局变化的需求量为统计年鉴数据,未来情景变化一般会利用趋势外推法,或者利用未来情景模型计算需求量。
1.2空间模块空间模块主要考虑空间化后的自然环境和社会经济因素的作用,分别将两个层次的模拟需求分配到空间位置,达到空间显性表达的目的。
空间模块又包括空间模块I和空间模块II。
2.2.1空间模块I空间模块I的目的是分析土地利用类型或农作物类别的空间分布适宜性、确定两个层次上的转换规则、以及转换的区域性和政策性限制因素。
(1)适宜性分析子模块该子模块的主要功能是根据土地利用类型或农作物类别空间分布格局和备选驱动因素数据,计算出各个土地利用类型或农作物类别在空间上的分布概率,利用分布概率来判断每种研究对象的空间分布适宜性。
这些备选驱动力因素中有些因素是直接导致研究对象发生变化,有些因素是间接导致研究对象发生变化,通过空间统计分析,可以确定在所有因素的影响下研究对象类型发生转变时最有可能出现的空间位置。
在CROPS 模型中,通过选取具有代表性的驱动力因子,以模拟对象(第一层为土地利用类型,第二层为农作物类型)空间数据为基础,利用二元Logistic 回归方程计算出每一种研究对象发生的概率,该方程可以解释各种研究对象类型与驱动力因素之间的关系。
分布概率计算公式如下:X X X ⨯++⨯+⨯+=⎪⎪⎪⎭⎫ ⎝⎛-nin i i i i ββββp p Log (122)110 式中,p i表示出现某一模拟对象i 的概率;X 表示各驱动因素;β是各影响因子相应的回归系数。
回归系数β运用统计学软件进行计算,方程需要置信度一般要大于95%(即α≤0.05),相关性较低的影响因子将不选入回归方程。
通常情况下,每一种研究对象(土地利用类型或农作物种植类型)的影响因素不同,故进入回归方程中的影响因素也不一样。
构建完成各种研究类型的回归方程后,利用ROC 曲线进行检验方程的精度[20]:ROC 值介于0.5和1之间,如果该值越接近于1时,说明该研究类型的概率分布和真实分布之间具有较好的一致性,构建的回归方程能较好地解释该研究类型的空间分布;反之,若该值越接近0.5,说明回归方程不能有效的解释该研究类型的空间分布,需要重新选取新的驱动力因素构建回归方程。
(2)转换规则子模块转换规则包括类型转移弹性系数和类型转移次序两部分。
类型转移弹性系数用0~1的数值表示,描述各类型变化的可逆性。
0代表极易发生转变,1代表不易发生转换,数值越小表示越容易发生转变。
类型转移次序表示两类用地之间发生转化的可能性,如林地能够转化为耕地,则标记为“+”,建设用地很难转变成耕地,则标记为“-”。