Ni—Cr—Al高温合金材料的研究现状及发展【摘要】随着航天、航空、电力、冶金、能源、石化工业的迅速发展,对高温抗氧化合金材料的服役性要求越来越高,高温抗氧化合金材料已经成为影响工业发展的决定因素,这就给高温抗氧化合金的研制和开发提出新的机遇和挑战。
Ni-Cr-Al合金以其抗高温、抗氧化性能被广泛的应用于燃气轮机叶片等高温部件,在国防和工业生产中,扮演着重要角色。
【关键词】Ni-Cr-Al高温合金;性能;研究现状;发展1.引言镍是一种耐腐蚀性优良、韧性较好的金属材料,具有良好的力学、物理和化学性能,添加适宜的元素可提高它的抗氧化性、耐腐蚀性、高温强度和改善某些物理性能。
Ni-Cr-Al合金的成分主要是镍铝,铬的含量较少,是重要的高温合金材料,在能源开发、化工、电子、航海、航空和航天等部门中都有广泛的应用,物理与化学的性能不言而喻,耐高温、抗蠕变、抗腐蚀性能好,凭借这些优良性能,使镍铬铝合金成为未来高温合金材料中最有前景和价值的合金材料之一,因此,研究镍铬铝合金对现实工业生产具有重要的意义。
2.概述Ni-Cr-Al高温合金依靠其耐高温抗氧化性能,成为重要高温材料之一,在国防和工业生产中,扮演着重要的角色,以其优良的性能被广泛应用于航空航天,电力,冶金等高温部件。
Ni-Cr-Al高温合金这样良好的性能主要依靠Al和Cr来形成一层Al2O3和Cr2O3保护性氧化膜,氧化膜生长缓慢,粘附性较好,对基体起到良好的保护作用。
3.Ni-Cr-Al合金的发展历程3.1 Ni-Cr合金:Ni-Cr合金可作为耐热、抗高温氧化和耐腐蚀的涂层。
典型的镍铬合金为镍含量80%、铬含量为20%,但也有镍为60%,铬为16%和其余为铁的。
其中80Ni20Cr合金是热喷涂常用的材料,该合金具有较好的耐高温氧化性能,耐酸和碱腐蚀,是制备耐热、耐蚀涂层的典型材料。
由于涂层致密、与基体材料的粘结性好,通常作为耐热陶瓷涂层的粘结底层,既能增加涂层的结合强度,同时又能防止高温氧化和腐蚀性气体对金属的侵蚀,但该合金不耐硫化氢、亚硫酸气体、盐类及高温潮湿下还原性气体的腐蚀,在硝酸、盐酸溶液中也容易受到侵蚀。
可广泛应用于锅炉水冷管壁(包括重油余热锅炉中的水冷管壁及燃煤锅炉水冷管壁)和换热器管壁,以减缓锅炉管壁的腐蚀与冲蚀。
如美国TAFA公司为喷涂锅炉水冷壁保护涂层而设计的牌号为45CT的镍铬合金丝,保护锅炉管道,延长其使用寿命。
3.2 Ni-Al合金:用于电弧喷涂的Ni-Al合金丝,镍、铝的质量比为Ni:Al=95:5,成分近似于镍包铝自粘结复合粉末。
许多方面Ni-Al合金丝可以代替Ni-Al 复合丝,而它的冶金结合性能优于Ni-Al复合丝。
Ni-Al合金丝用作电弧喷涂时,电弧使熔滴强烈过热,镍和铝的氧化反应(而不是铝化镍的形成)放出大量的热量,使熔滴地撞击到工件表面的瞬间与基体表面发生冶金结合,形成一些微“焊合”点,导致涂层与工件之间的牢固结合。
Ni-Al合金涂层除具有良好的抗高温氧化性能外,还具有良好的腐蚀性能。
3.3 Ni-Cr-Al-Y合金:为四元系高温热腐蚀涂层,航空、舰船、发电用的在高温合金制作的高温部件,在其表面施加这种四元系涂层,厚度在45-200?m,可以提高机体材料的抗热腐蚀能力,耐热寿命可延长达几千小时,以致近几万小时[1]。
4. Ni-Cr-Al抗高温氧化合金性能的研究现状随着航天、航空、电力、冶金、能源、石工工业的迅速发展,对高温抗氧化合金材料的服役性要求越来越高,高温抗氧化合金材料已经成为影响工业发展的决定性因素,这就给高温抗氧合金的研制和开发提出了新的挑战机遇,目前提高合金抗高温氧化的手段如下:4.1 通过向合金内添加亲氧元素,使合金表面发生择优氧化,进而形成一层连续、致密、粘附性较好的氧化薄膜更好的保护基体,产生择优氧化的条件[2]:4.1.1 添加在合金中的元素对氧的亲和力要大于基体金属的。
4.1.2 在基体中掺杂的合金元素的离子半径要小于基体的,这样容易向表面扩散。
4.1.3 在更容易发生扩散行为的情况下加热。
其中添加元素Cr、Al、Si在提高合金抗氧化性起到重要作用。
4.2 通过处理表面来加强合金的抗氧化能力4.2.1 扩散掺层法4.2.2 通过注入稀土元素改层法4.3 通过防护涂层法来进一步加强防护能力4.3.1 合金涂层高温合金抗氧化涂层有以下分类[3]4.3.1.1 铝-铬、铝-铅、铝-硅等铝化物涂层是通过用化学气相沉积的方法经改进所获得,这些涂层有制作简单、自身性质稳定、而且造价较低等较好的优点,其缺点是组成的成分的控制很不容易。
4.3.1.2 M-CrAl-Re,其中M包括的范畴为铁、钴、镍等磁性材料,Re包括的范畴为稀土元素钇、铈、铪等活性元素)此类涂层属于包覆涂层,这种涂层在低温低压的条件下用等离子喷涂、电子束物理气相沉积、溅射离子镀等手段制作,此类涂层的组成部分是可以控制的,同时具备抗腐蚀性能等优点,其缺点是生产的成本较高而且工艺设备造价很高,即便生产出来也难以均匀的涂在基体表面。
4.3.2 陶瓷涂层此涂层是可以在低温低压下用等离子喷涂制作而成的。
4.4 纳米涂层[4]如果用离子溅射沉积的方法来处理铸态合金表面,可以得到这种纳米涂层在二个方面的作用:一方面,这种涂层的应用可以明显提高合金基体的抗高温抗氧化性能,进而提高对合金基体进行保护作用,其作用机理就是改善氧化薄膜,另一方面这种涂层的使用不会使其材料与基体发生不利的作用。
5.Ni-Cr-Al合金高温氧化的研究进展Ni-Cr-Al合金是在80Ni-20Cr 合金的基础上加入Al元素发展起来的,由于该合金优良的耐高温氧化和腐蚀能力而被广泛地用于热防护涂层。
Ingard A等人研究了含不同Cr/A1比的Ni-Cr-Al合金在800-1300℃空气或1个大气压氧气中的氧化行为。
发现氧化速率随时间迅速降低,且为理想的抛物线。
主要反应产物为NiO,Cr2O3,α-A12O3和Ni(Cr,A1)2O4。
反应产物相对量是成分、温度、氧压和反应时间的函数。
Ni-9Cr-6Al合金由于在所有温度下都形成α-A12O3具有最好的抗氧化性能。
孙长波等研究了Ni-Cr-Al合金在1000℃空气中的氧化行为,经过试验发现在合金中添加Al元素以后使合金的氧化速度很明显的下降了,促使合金在高温条件下自身的抗氧化性能得到显著的提高;合金元素Al的添加使合金表面生成连续致密的Cr2O3薄膜,继而还降低了在合金外层形成Cr2O3薄膜需要Cr的含量,合金元素Cr,还使合金表面氧化薄膜的内部生成极薄A12O3,含Cr为20%,含Al为2.5%的Ni基合金在高温情况下在合金表面形成连续致密的氧化薄膜,成分为Cr2O3,而在Cr2O3薄膜内部形成极薄的A12O3薄膜,进而抑制了NiO的生长. 这些研究结果表明,合适的Al,Cr合金化可以使合金发生选择氧化。
Cr,Al选择氧化可以提高Ni-Cr-Al合金的高温氧化性能。
Ni-Cr-Al合金氧化膜与基体的粘附性不是很好,导致氧化过程中有轻微的氧化膜剥落,就其原因人们作了大量研究。
早期有人注意到杂质硫会向Ni及Ni基合金表面的偏聚,且氧化膜的粘附性与杂质元素硫偏聚有关。
Ni-Cr-Al合金在真空炉中进行高温退火处理时,发现当以杂质元素形式存在的硫含量为50×10-6的合金,表面的硫含量可以达到20at%,从而引起氧化膜的严重剥落。
Ni-Cr-Al合金内添加微量稀土可以显著改善合金的抗高温氧化性能。
如已发展的含稀土氧化物的弥散强化合金即(ODS合金),抗高温腐蚀性能最优异的包覆涂层MCrAl-Y(M代表Ni、Co或Fe)。
Funkenbusch等曾对不同S与Y添加量的Ni20Cr12Al(%)合金的循环氧化进行了研究.由于Y的加入,合金表面的氧化膜的粘附性确实得到了很大提高。
人们已经对稀土元素的微观作用机制进行了大量研究,其中提出了一些具有代表性的模型:微钉理论、空位阱理论、生长应力消除理论、氧化膜塑性理论及硫效应模型,但到目前还没有统一的模型,已经提出的多种模型都存在局限性。
6.Ni-Cr-Al-Y涂层高温氧化研究进展Ni-Cr-Al-Y耐高温涂层材料,其热膨胀系数介于金属和陶瓷之间,有着良好的抗氧化抗腐蚀的综合性能,即可以单独用作热障涂层(TBCS)也可以作为热障涂层中的粘结层使用。
广泛应用于大型燃气涡轮发动机叶片等高温部件的热障涂层中,工作温度一般在1000℃以上。
热障涂层的应用不仅可以提高基体抗高温腐蚀能力,进一步提高发动机工作温度,而且可以减少能耗、提高效率、延长热端部件的使用寿命。
李美姮等研究了溅射Ni-Cr-Al-Y涂层氧化过程A12O3膜结构与形貌的转变,结果发现溅射Ni-Cr-Al-Y涂层在900℃~1100℃氧化过程中,氧化膜存在θ→α-A12O3相变,其相变的速度与温度有关,温度越高,相变越快;涂层表面生成的氧化膜形貌取决于氧化温度和时间,θ-A12O3随着温度的提高或同一温度下时间的延长,从针状依次变化为晶须状和刀片状或簇拥成团,而α-A12O3为颗粒状;对溅射Ni-Cr-Al-Y涂层进行真空热处理,可促进氧化膜的相变,使涂层表面快速形成保护性的α-A12O3 。
张玉娟等[22]研究了Ni-Cr-Al-Y涂层的表面状态对高温氧化行为的影响,经研究发现:抛光态涂层在1050℃恒温氧化,短期内(150h)生成α-A12O3保护膜,氧化膜与基体的粘附性好,氧化动力学曲线成抛物线型,涂层抗氧化性好;150h后,保护性氧化膜被破坏,动力学曲线转为线性上升,涂层抗氧化能力下降。
喷涂态涂层的长期抗恒温氧化能力比抛光态涂层强。
在1050℃恒温氧化300h,动力学曲线符合抛物线规律,表面α-A12O3保护膜无破坏。
无涂层涂覆的基体合金表面不能生成α-A12O3保护膜,合金抗氧化能力差。
楼翰一等研究Ni-Cr-Al纳米晶合金在1000℃的高温氧化行为,研究发现纳米晶化大大扩展了铸态Ni-Cr-Al合金氧化时,连续外A12O3层生成区的成分范围;更为重要是,在常温高温合金所在的成分区域内,纳米晶合金可以在氧化初期直接一步生成抗氧化性和粘附性十分优良的A12O3膜。
7.展望随着科学技术的进一步发展,Ni-Cr-Al高温合金将被更广泛的应用到国防、工业生产的各个领域,合理的控制好合金中Al和Cr的含量有利于氧化薄膜更好的形成,同时适量的加入稀土元素有利于控制S元素对薄膜脱落的影响,更好的保护Ni-Cr-Al合金基体,以便更好的发挥Ni-Cr-Al合金优良的抗高温、抗氧化性能。
参考文献[1]石力开.化学材料词典[M].化学工业出版社,2006.[2]朱日彰.金属腐蚀学[M].北京冶金工业出版社,1989.[3]唐兆麟.Ti-Al金属间化合物的高温氧化防护涂层[D].沈阳:中科院金属所博士论文,1997.[4]陈磊,王富岗抗高温氧化合金的研究进展[J].材料导报,2002,16(5):27-29.。