水性双组份聚氨酯清漆Lothar Kanl;Manfred Bock;Eberhard Jurgens Hans Josef Laas水性双组份聚氨酯清漆已成为溶剂型体系的一类换代产品。
本文介绍和讨论了在汽车施工过程中,涂料的原材料及其特性。
同时亦介绍了交联反应以及各组分的最佳混合工艺。
1 绪言对高质量的汽车来说,外观同舒适和安全同样是重要的。
随着汽车市埸国内和国际竞争的加剧,使用高质量涂料的趋势越来越强烈。
在过去十年里,进行了大量的研究开发工作,出现了许多新的涂料体系,并已进行了试用和考核。
由于聚氨酯清漆具有优良的综合性能,如抗划痕性,抗化学性,同时具有优良的高光泽,高亮度,所以在欧洲和美国受到了特别的青睐。
这些体系正逐渐替代传统的丙烯酸/氨基体系。
高固体单组份和双组份聚氨酯清漆也能满足减少汽车涂料溶剂释放的要求。
水性和粉末清漆能进一步减少溶剂的释放。
现在粉末涂料正处在有利发展阶段。
这些体系在生产线使用的适用性,将从1996年开始在欧洲和美国的中试生产线上进行试验。
水性单组分清漆已经并正用在汽车涂装生产线上。
上面这些体系的性能均优于丙烯酸/氨基清漆,但仍达不到溶剂型双组份PU体系的水平。
为满足汽车在线涂装(OEM)的主要要求:包括高光泽,优异的耐化学性,耐划痕性及耐候性,已经研制生产了水性双组份PU清漆所用的原材料。
本文介绍了水性清漆交联反应的分析研究,并解释了施工性能的关键因素。
同时也讨论了原材料发展前景和涂料组分混合的最佳工艺。
2 原材料选择:1988年,Bayer公司首次报道了水性多元醇和无水多异氰酸酯交联形成一种漆膜。
对体系进行优化后开发出了工业化产品,可用于工业涂装、木材涂装、塑料涂装、和汽车维修。
在汽车OEM 使用中同样也存在原材料匹配问题,这将通过进一步与涂料工业加强合作而进行开发。
用于汽车OEM涂装的水性双组分PU清漆是用脂肪族和脂环族多异氰酸酯与水性聚丙烯酸酯及聚氨酯多元醇配制而制得。
疏水多异氰酸酯与溶剂型双组分PU清漆中的固化剂是完全一样的。
水性双组分PU清漆的固化剂可用少量有机助溶剂稀释,达到合适的施工粘度。
水性多元醇是用有机酸来进行亲水性改性,再用胺中和。
多元醇组分中,除水之外还含有特殊的添加剂和少量的有机助溶剂,以提高流平性和施工性能。
不同原材料影响漆膜性能如下:*HDI多异氰酸酯-耐划痕性*IPDI多异氰酸酯-耐化学性*聚氨酯多元醇-流平性(湿润性)-耐划痕性*聚丙烯酸酯多元醇-耐化学品性,耐候性聚氨基甲酸酯/聚丙烯酸酯混合物是这些水性体系最适用的组份。
根据耐划痕性和耐化学品性的需要,也可使用纯HDI/IPDI混合多异氰酸酯。
3.水性双组分PU清漆的化学反应:多异氰酸酯的-NCO基和多元醇的-OH加成形成氨基甲酸酯结构,这是形成网状聚合物的主要反应。
从整个体系看,多异氰酸酯和官能基团之间的副反应可形成如下结构:与水反应→脲与中和剂反应→氨基甲酸酯与羧基反应→酰胺所有这些反应均能形成交链结构,具有高耐化学性。
与有机酸反应形成酰胺基会极大地破坏体系的亲水性。
其结果是得到具有优良耐水性的涂料。
当多异氰酸酯/多元醇比率超过1.0时,能形成致密的氨基甲酸酯网络补偿多异氰酸酯网络。
当多异氰酸酯/多元醇的当量比为1.5时,能满足汽车OEM涂装的要求。
4.烘烤型涂料的反应特性:主反应和副反应的反应程度主要受固化温度的影响。
汽车修补采用常温干燥的反应过程已被很多人研究,并有不少文献报道。
与汽车修补相反,汽车在线涂装一般采用强制干燥型涂料。
对溶剂型体系,干燥温度在120-140℃范围之内。
由于水与溶剂具有不同的蒸发动力学,水性体系需要较长的闪蒸时间和在70-90℃进行预干燥。
最后在与溶剂型体系一样的条件下进行固化。
下面的水性双组分清漆使用与生产线上相似的干燥条件。
闪蒸:23℃,8分钟预干燥:80℃,5分钟固化:130℃,30分钟4.1 NCO基团反应历程干燥过程中,在给定时间内NCO基的含量由IR光谱(见图1)进行分析。
图1:OEM条件下,干燥过程中NCO含量的变化在室温闪蒸期间,NCO含量基本保持不变。
在80℃预干燥时间内,-NCO基团的含量在5分钟内由98%降低到83%。
大部分交联反应是在130℃时发生,经过30分钟后,多异氰酸酯被接到聚氨酯网络上。
大约只有7%的残留-NCO基团能被测出。
在室温下放置三天,-NCO基继续与多元醇及空气中水分反应,残留-NCO降至0.2%以下。
此时聚氨酯网络完全形成。
4.2水分的挥发在干燥期间的任一时刻,异氰酸基团的反应能力受该时所有反应组分浓度的控制。
整个挥发过程可由气相色谱分析给出详细的数据(见图2)。
图2:水性双组份PU清漆的蒸发过程尽管水的挥发速率较低,但水作为挥发组分的主要组成部分离开漆膜仍相对较快。
在室温闪蒸8分钟和80℃预干燥5分钟后,水的含量已降至0.5%以下。
130℃固化5分钟后,水的含量已减少到0.2%左右。
这意味着已没有水可在主交联反应过程中产生副反应了。
二甲基乙醇胺(DMEA)作为中和剂时,起初浓度为1.7%,经80℃预干燥后检测,以液体清漆计,发现最多只有0.5%的中和剂。
130℃固化5分钟后已降至0.1%以下。
由于DMEA有可能与异氰酸酯反应,DMEA含量减少可能由于挥发或由于反应生成氨基甲酸酯所致。
采用不含异氰酸酯固化剂的漆膜对此研究表明,在同样干燥条件下,约有30%的DMEA(绝对含量约0.4%)挥发掉了。
这就表明在初始的双组份体系中,约有1.2%的DMEA和异氰酸酯基团反应,生成聚氨酯漆膜了。
事实上,到干燥过程结束时,所有非反应性的有机助溶剂均已从漆膜中挥发出了。
残余的一些助溶剂在以后的几天中也会全部挥发掉。
4.3交联反应产物:水性双组份OEM体系在室温干燥期间所得产物与水性双组分修补漆干燥后所得产物非常类似。
因为水过量,因此约有三分之二的异氰酸基团反应生成脲。
虽不能定量分析出羧酸与异氰酸酯形成酰胺的准确含量,但可借助光谱分析测定酰胺含量大致在3mol%以下。
大多数羧酸基团已反应掉,从而提高了体系的耐水性。
如果固化温度升至130℃,脲的含量将降至约6mol%。
这是由于水分的迅速挥发,130℃烘5分钟后残留的水含量只有0.2%左右(见表1)。
一旦烘烤结束后,脲是由残余的-NCO基团与大气中水分反应而成。
这一事实在较高温度,较长时间干燥试验中得以证实。
事实上,所有异氰酸酯基团都与多元醇(OH或COOH基团)或中和剂(-OH基团)反应,脲含量降至1mol%以下。
表1:在水性双组份PU清漆中异氰酸酯的反应产物干燥条件异氰酸酯反应产物[mol %]氨基甲酸酯脲酰胺1.室温约51 约46 〈32.室温,8分钟+80℃5分钟+130℃30分钟+室温7天约91 约6 〈33.室温,8分钟+80℃5分钟+130℃30分钟+60℃16小时约96 〈1 〈34.4清漆固化过程:综合上述这些试验结果,可得出水性双组份聚氨酯体系在汽车OEM涂装条件下的固化过程。
在闪蒸期间,多异氰酸酯,多元醇与中和剂之间并没有明显的反应。
在80℃烘5分钟,所有的水全部挥发,多异氰酸酯与多元醇及中和剂首先发生反应。
在130℃,大部分交联反应完成,30分钟后,-NCO含量降至初始量的10%以下。
固化之后,残留的NCO基团与大气中水分反应生成脲。
结果是得到含有氨基甲酸酯、脲及少量酰胺的完全固化涂膜。
5.双组份涂料混合后的稳定性:既然双组份体系正常施工条件下是经济的,并有利于环境保护,那末两组份在混合后必须具有足够的稳定性。
以使在出现生产线停止或停顿故障时,无需冲洗管道,便能立即恢复涂装。
而对于烘烤型涂料,在生产线中断之前和较长的闪蒸时间之后仍能得到好的结果这是可能的。
下述章节介绍水性双组份PU清漆在开始混合到施工(适用期)及从施工之后到烘烤(延长闪蒸时间)之前,其性能与时间的关系。
5.1 适用期表征适用期特性的主要指标有下述几点:*湿涂料中的NCO含量*湿涂料的粘度变化*流挂极限和针孔形成*漆膜性能5.1.1 湿涂料中的NCO含量多异氰酸酯与多元醇混合后,起初三小时内以每小时0.15%的恒定速率下降(见图3)。
在所研究的体系内,这意味着-NCO含量从3.8%降至3.4%。
最近正在研究如何测定NCO基团与多元醇,中和剂,水之间反应引起NCO含量减少到什么程度。
图3:湿涂料中NCO含量的减少5.1.2湿涂料的粘度变化为确保稳定的施工性能,关键在于涂料在适用期内有一个稳定的粘度。
至今所进行的研究表明,绝对粘度和粘度变化受增稠剂和选用的有机助溶剂的影响。
图4表示,双组份涂料在使用聚氨酯增稠剂和不同助溶剂时所得到的结果。
图4:使用不同混合助溶剂时粘度变化混合助溶剂A和C不适合用在适用期长的产品中,要不粘度增长太快,要不在短时间后明显下降。
这两种情况,混合后施工性能均会随时间而有所变化。
相反,含混合助溶剂B的涂料粘度在90分钟内保持稳定,随后明显升高。
为确保最长的适用期,按不同体系选择混合助溶剂。
若使用不同基料,必须重新选择。
5.1.3流挂趋势和针孔形成涂料的粘度和流挂性有密切的关系。
体系的粘度越低,在垂直表面上就越易流挂。
绝对粘度和粘度随时间的稳定性是确保流挂性的关键因素。
另外,在室温和升温干燥时底材上的涂料的粘度也不能有明显下降。
对含混合助溶剂B的双组份体系(具有优良的粘度稳定性)的施工性进行了详尽的研究。
(见图5)图5:混合涂料的贮存时间和施工性能的关系漆膜在75-90分钟内,流挂性无多大变化,涂膜的流挂极限厚度为40-45μm。
随涂料粘度升高,在垂直面上的耐流挂性也增强。
形成针孔的界限变化却相反。
在开始的75-90min 内,约55μm厚时仍保持稳定。
然后,渐渐地降低。
较低的极限可用以下原因解释:一是-NCO/水反应随时间而增多,二是水和二氧化碳从较高粘度的漆膜中挥发更加困难。
5.1.4 漆膜性能双组份PU清漆的流平性和清晰度主要受液体涂料的流平性和展布性控制。
这种结构状态经干燥后就被固定下。
在混合和施工后,这种水性双组分体系的流动非常类似于溶剂型双组份体系。
当涂料的粘度增加时,由于喷涂施工和溶剂挥发出现的桔皮现象也会加重。
对含混合助溶剂B的水性漆。
经2小时后可看到这种现象。
在这期间,机械性(摆杆硬度和耐划痕性)和抗性没有变化。
涂料混合后不立即离工,耐候性将受到不良影响的说法是不太可能的。
目前正在进行研究以证实这一结论。
5.1.5 适用期的设定如上所述,混合和施工后,湿涂料和漆膜性能对时间的依赖性表明:适用期主要受施工性能影响。
粘度升高与低限针孔形成和明显桔皮形成使适用期限制在90分钟以内。
这对使用双组份喷涂设备的在线涂装是足够了。
如果涂装线停止超过90分钟,含混合涂料的涂装线的所有部件必须全部清洗。
5.2较长时间闪蒸后涂料的性能为了模拟在涂装线发生中断时的情况时,已涂装好的汽车经较长时间闪蒸后才烘烤的状况,将试验样板经过24小时闪蒸后,按常规烘干,检测其结果。